- 【深度学习|学习笔记】什么是k折交叉验证?K折交叉验证的步骤详解?以及如何在K折交叉验证中选择k?
努力毕业的小土博^_^
机器学习基础算法优质笔记2深度学习学习笔记人工智能
【深度学习|学习笔记】什么是k折交叉验证?K折交叉验证的步骤详解?以及如何在K折交叉验证中选择k?【深度学习|学习笔记】什么是k折交叉验证?K折交叉验证的步骤详解?以及如何在K折交叉验证中选择k?文章目录【深度学习|学习笔记】什么是k折交叉验证?K折交叉验证的步骤详解?以及如何在K折交叉验证中选择k?一、什么是K折交叉验证?✅目的:二、K折交叉验证的发展背景三、K折交叉验证的步骤详解步骤如下:数学
- 创客匠人拆解创始人 IP 差异化密码:从专业优势到商业壁垒的构建路径
创小匠
tcp/ip网络协议网络
在知识付费红海竞争中,“专业背景强却变现乏力”是多数创始人IP的核心困境。创客匠人通过吴迪老师等案例的深度陪跑,提炼出“差异化三维模型”——这一方法论超越了表面的包装技巧,直指IP商业壁垒的底层构建逻辑。一、差异化定位的黄金三角:优势、弱势与痛点的交叉验证创客匠人CEO老蒋提出,真正的差异化需满足三个维度:自身核心优势:如吴迪老师“减肥吃得饱、不运动”的技术专利,将专业壁垒转化为用户可感知的价值点
- 基于大模型预测肾囊肿的技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习
目录一、引言二、技术方案概述(一)数据收集与整理(二)大模型构建与训练(三)术前预测与方案制定(四)术中决策支持(五)术后管理与预测(六)并发症风险预测与防控(七)健康教育与指导三、技术方案流程图四、统计分析与技术验证方法(一)模型性能评估指标(二)对比实验设计(三)交叉验证与外部验证五、实验验证证据(一)回顾性病例分析(二)前瞻性临床试验六、健康教育与指导方案细化(一)饮食指导(二)运动康复(三
- python打卡第13天!!!
DAY13知识点复习不平衡数据集的处理策略:过采样、修改权重、修改阈值交叉验证代码作业:从示例代码可以看到效果没有变好,所以很多步骤都是理想是好的,但是现实并不一定可以变好。这个实验仍然有改进空间smote+过采样+修改权重的组合策略#自己尝试使结果变得更好smote+过采样+修改权重的组合策略importnumpyasnp#引入numpy用于计算平均值等fromsklearn.ensemblei
- 表格数据处理大语言模型训练新范式:交叉验证与混合训练集构建
CodePatentMaster
语言模型人工智能自然语言处理
当前技术领域痛点在数字化办公场景中,表格数据处理面临着两大核心挑战:一是现有大语言模型对表格数据处理的准确率普遍偏低;二是不同格式的表格(如文档嵌入表格与电子表格)需要采用完全不同的处理方法。传统解决方案通常存在以下问题:推理能力不足:现有benchmark提供的简短答案无法支持复杂表格操作所需的推理过程数据多样性有限:训练数据主要集中在表格查询操作,缺乏更新、合并、绘图等实际办公需求格式适应性差
- Kaggle-Predicting Optimal Fertilizers-(多分类+xgboost+同一特征值多样性)
美少女zss
分类数据挖掘人工智能
PredictingOptimalFertilizers题意:给出土壤的特性,预测出3种最佳的肥料数据处理:1.有数字型和类别型,类别不能随意换成数字,独热编码。cat可以直接处理category类型。2.构造一些相关土壤特性特征3.由于label是category类型,但是xgb不可以处理category类型,因此需要先编码,最后求出结果之后再解码。建立模型:1.catboost交叉验证、xgb
- 模型评估与模型参数选择:机器学习实践的关键步骤
沐秋子
机器学习人工智能
在机器学习的海洋中,构建一个模型仅仅是冰山一角。真正的挑战在于如何确保这个模型能够准确地预测未知数据,并且拥有最优的性能表现。这就涉及到了两个至关重要的环节:模型评估和模型参数选择。本文将带您深入了解这两个概念,并介绍一些实用的技巧和方法。目录1.模型评估1.1训练误差与泛化误差1.2过拟合与欠拟合1.3交叉验证1.4正则化2.模型参数选择3.总结与实用建议1.模型评估1.1训练误差与泛化误差模型
- 机器学习与深度学习14-集成学习
目录前文回顾1.集成学习的定义2.集成学习中的多样性3.集成学习中的Bagging和Boosting4.集成学习中常见的基本算法5.什么是随机森林6.AdaBoost算法的工作原理7.如何选择集成学习中的基础学习器或弱分类器8.集成学习中常见的组合策略9.集成学习中袋外误差和交叉验证的作用10.集成学习的优势和局限性前文回顾上一篇文章链接:地址1.集成学习的定义集成学习(EnsembleLearn
- 【实战】基于 Tauri 和 Rust 实现基于无头浏览器的高可用网页抓取
Sopaco
rust开发语言后端
一、背景在SagaReader的早期版本中,存在对网页内容抓取成功率不高的问题。主要原因是先前采用的方案为后台进程通过reqwest直接发起GET请求获取网站HTML的方案,虽然仿真了Header内容,但仍然会被基于运行时的反爬机制(如Browser指纹交叉验证、运行时行为识别、动态渲染等)所屏蔽。这导致我们无法稳定、可靠地获取内容,影响应用的可用性。为了解决这一痛点,我们优化了更新机制。利用Ta
- 职坐标解析职业规划核心五步骤
职坐标在线
其他
职业规划是个人职业发展的系统性工程,其核心在于将抽象目标转化为可落地的行动路径。本部分将围绕职业定位、行业趋势分析、能力评估、目标拆解及路径规划五大模块展开,构建从认知到实践的完整框架。其中,职业定位需结合个人价值观、兴趣与市场需求三维度交叉验证;行业趋势分析强调通过政策解读、技术迭代及岗位需求变化捕捉机遇;能力评估则需借助标准化工具与场景化验证实现客观诊断。职坐标职业规划专家建议:在制定规划时,
- 机器学习与深度学习04-逻辑回归02
my_q
机器学习与深度学习机器学习深度学习逻辑回归
目录前文回顾6.正则化在逻辑回归中的作用7.特征工程是什么8.逻辑回归的预测结果如何9.什么是ROC曲线和AUC值10.如何处理类不平衡问题11.什么是交叉验证前文回顾上一篇文章地址:链接6.正则化在逻辑回归中的作用逻辑回归中,正则化是一种用于控制模型复杂度的技术,它对模型的参数进行约束,以防止过拟合。正则化通过在损失函数中引入额外的正则化项来实现,这些正则化项对参数的大小进⾏惩罚,逻辑回归中常用
- 【自然语言处理与大模型】大模型(LLM)基础知识⑤
小oo呆
【自然语言处理与大模型】自然语言处理人工智能
(1)如何保证大模型生成内容的合规性?从训练数据净化、RLHF对齐、实时过滤三层技术防线入手,同时建立人工审核-用户反馈-版本回滚的流程闭环,最后通过法规映射和日志审计满足制度合规。核心是让技术防控(如Fine-tuning+Post-filtering)与人类监督形成交叉验证,而非依赖单一手段。技术层面:技术手段描述强化学习与指令微调通过强化学习(如RLHF)或指令微调,让模型更倾向于生成合规、
- 【机器学习基础】机器学习入门核心算法:K-近邻算法(K-Nearest Neighbors, KNN)
白熊188
机器学习基础python算法机器学习近邻算法
机器学习入门核心算法:K-近邻算法(K-NearestNeighbors,KNN)一、算法逻辑1.1基本概念1.2关键要素距离度量K值选择二、算法原理与数学推导2.1分类任务2.2回归任务2.3时间复杂度分析三、模型评估3.1评估指标3.2交叉验证调参四、应用案例4.1手写数字识别4.2推荐系统五、经典面试题问题1:KNN的主要优缺点?问题2:如何处理高维数据?问题3:KNN与K-Means的区别
- Python训练营-Day11-常见的调参方式
Mallow Flowers
Python训练营python机器学习开发语言深度学习人工智能
超参数调整专题1知识点回顾网格搜索随机搜索(简单介绍,非重点实战中很少用到,可以不了解)贝叶斯优化(2种实现逻辑,以及如何避开必须用交叉验证的问题)time库的计时模块,方便后人查看代码运行时长今日作业:对于信贷数据的其他模型,如LightGBM和KNN尝试用下贝叶斯优化和网格搜索#%%[markdown]##DAY10##1.把之前所有的处理手段都处理一遍,回顾一下全流程,以后就用处理好的部分直
- python打卡训练营学习记录Day11
m0_74839150
python学习机器学习
超参数调整专题1知识点回顾网格搜索随机搜索(简单介绍,非重点实战中很少用到,可以不了解)贝叶斯优化(2种实现逻辑,以及如何避开必须用交叉验证的问题)time库的计时模块,方便后人查看代码运行时长importpandasaspdimportpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportseabornassnsplt.rcPara
- 机器学习调整参数
张张张张张高高
机器学习python
机器学习调参学习为什么需要调参?调参调的都是哪些参数?怎样调参?手工调参网格搜索随机搜索贝叶斯搜索K折交叉验证如何衡量参数是否合适最近用机器学习进行预测,结果总是不理想,所以决定学一学关于调参的内容,借鉴了网上大神们的笔记,分享个人理解,如果有理解的不到位的地方欢迎大家评论区纠正。为什么需要调参?机器学习中最困难的地方就是为模型找到最好的超参数,模型的性能与超参数有很大的影响。调参调的都是哪些参数
- 基于线性回归的数据预测
所见即所得11111
线性回归算法回归
1.自主选择一个公开回归任务数据集(如房价预测、医疗数据、空气质量预测等,可Kaggle)。2.数据预处理:完成标准化(Normalization)、特征选择或缺失值处理等步骤。3.使用线性回归模型进行建模。采用80%数据用于训练,20%用于测试,重复划分数据集并训练模型20次,记录每次结果(交叉验证)。4.输出平均均方误差(MSE)或平均绝对误差(MAE),并可选与其他模型(如决策树回归、岭回归
- 32/64位系统架构冲突下MATLAB安装问题的大数据分析与解决方案
百态老人
matlab数据分析开发语言
核心问题分析(基于21份证据交叉验证):架构不兼容:32位系统无法直接运行64位MATLAB程序,两者二进制指令集不同。安装路径冲突:64位与32位MATLAB不能共存于同一目录,需独立安装。编译器依赖:跨位编译需特定工具链(如32位编译器+64位运行时库)。系统环境限制:旧版MATLAB(如7.0)对64位系统支持差,需虚拟机或兼容模式。解决方案与代码示例:1.系统位宽检测(MATLAB/Pyt
- 机器学习第十九讲:交叉验证 → 用五次模拟考试验证真实水平
机器学习第十九讲:交叉验证→用五次模拟考试验证真实水平资料取自《零基础学机器学习》。查看总目录:学习大纲关于DeepSeek本地部署指南可以看下我之前写的文章:DeepSeekR1本地与线上满血版部署:超详细手把手指南交叉验证是模型考试的防作弊系统,通过多次划分考卷验证真实能力1。通过驾校考试案例详解:一、核心原理(驾照科目模拟考)假设驾校有100名学员的考试数据,采用5折交叉验证:flowcha
- loso训练策略
一只波加猹~
微表情检测深度学习机器学习人工智能
问:loso训练策略是保留一个受试者作为测试集,其他受试者作为训练集那在一个epoch中,是只有一个受试者作为测试,还是说在这个一个epoch中每个受试者都轮流作为测试呢?AN:LOSO(Leave-One-Subject-Out)训练策略的主要思想是:每次选择一个受试者作为测试集,而剩余的所有受试者作为训练集。在一个完整的LOSO交叉验证过程中,每个受试者都会轮流作为测试集,最终会执行N次训练-
- R语言机器学习算法实战系列(二十五)随机森林算法多标签分组分类器及模型可解释性
生信学习者1
R语言机器学习实战机器学习算法数据可视化数据分析数据挖掘随机森林
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍教程内容加载必要的R包(带详细注释)1.加载数据2.数据分割(按Species分层抽样)3.数据预处理配方4.创建随机森林模型(多分类)5.创建工作流6.设置交叉验证和参数调优7.参数调优8.选择最佳参数9.最终模型训练10.模型预测11.模型评估11.1创建结果数据框11.2计算评估指标11.3单独计算每个类
- 模型评估与调优(PyTorch)
缘友一世
深度学习pytorch机器学习人工智能
文章目录模型评估方法混淆矩阵混淆矩阵中的指标ROC曲线(受试者工作特征)AUCR平方残差均方误差(MSE)均方根误差(RMSE)平均绝对误差(MAE)模型调优方法交叉验证(CV)交叉验证方法Holdout验证K折交叉验证留一验证十折交叉验证网格搜索交叉验证随机搜索PyTorch实现交叉验证源代码地址代码内容准确度为0的问题分析和解决解决方法:❌原始错误原因分析1.数据分布不合理2.训练集和验证集无
- sklearn基础教程:从入门到精通
洛秋_
机器学习
文章目录sklearn基础教程:从入门到精通一、sklearn简介二、安装与配置三、数据预处理数据导入数据清洗特征选择数据标准化与归一化四、常用模型介绍与应用线性回归逻辑回归决策树支持向量机K近邻算法随机森林集成学习五、模型评估与调优交叉验证网格搜索模型评估指标六、实战案例波士顿房价预测手写数字识别客户流失预测七、测试接口与详细解释单元测试接口测试八、总结个人博客【洛秋小站】洛秋资源小站【洛秋资源
- Pytorch加载部分预训练模型的参数
卡卡南安
Pytorchpytorch人工智能python
问题背景假设我有一个已训练好的Model1,并已保存它的参数为.pth格式,我有一个与Model1结构完全相同的模型Model2,我希望Model2加载Model1中与特征提取有关的模块的参数,其他模块的参数随机初始化。应用场景为在K折交叉验证时,我希望从第二折开始的模型加载第一折训练模型的部分参数,并在此基础上微调,从而减少训练轮数。解决方法加载保存的第一折训练好的模型参数,因为我保存时是多GP
- 机器学习:数据集划分方法
锅巴不写代码
机器学习机器学习
机器学习:数据集划分方法留出法hold-out交叉验证法cross-validationk折交叉验证数据集的划分:留一法自助法bootstrapping留出法hold-out数据集划分为两个互斥的集合:训练集和测试集。训练集占总数据集的2/3-4/5再进行划分时,采取分层采样的方式,这是为了在划分时保持数据分布一致,在分类任务中,保持样本的类别比例相似。注意单次使用留出法得到的结果不够可靠,一般采
- AI 的 6 大核心方向 + 学习阶段路径
星火撩猿
AI&大模型人工智能学习
一、机器学习(ML)目标:用数据“训练”模型,完成分类、回归、聚类等任务。学习阶段:(1)基础数学:线性代数、概率统计、微积分(适度)(2)ML基础算法:线性回归、决策树、KNN、SVM(用scikit-learn)(3)模型优化:交叉验证、正则化、特征工程(4)无监督学习:K-Means、PCA、DBSCAN(5)实战项目:房价预测、信用评分、客户分类等推荐工具:Python、scikit-le
- 一文读懂机器学习:分类(classification)、回归(regression)、排名(ranking)、uplifting(提升效果)和异常检测(Anomaly detection)
此星光明
机器学习分类回归数据挖掘ydf排序提升异常检测
概述机器学习是一种人工智能技术,使计算机能够通过经验自动改进性能,主要分为监督学习(使用带标签的数据进行训练)、无监督学习(寻找无标签数据中的模式)、半监督学习(结合带标签和无标签数据)和强化学习(通过与环境交互学习)。它广泛应用于金融(信用评分)、医疗(疾病预测)、自动驾驶(路径规划)和自然语言处理(机器翻译)等领域,关键概念包括特征、模型、过拟合和交叉验证。本文我们使用ydf方法进行分别介绍。
- Python训练营打卡DAY11
我想睡觉261
python开发语言
DAY11超参数调整专题知识点回顾网格搜索随机搜索(简单介绍,非重点实战中很少用到,可以不了解)贝叶斯优化(2种实现逻辑,以及如何避开必须用交叉验证的问题)time库的计时模块,方便后人查看代码运行时长今日作业:对于信贷数据的其他模型,如LightGBM和KNN尝试用下贝叶斯优化和网格搜索#回顾一下importpandasaspdimportnumpyasnpimportmatplotlib.py
- 代码审查流程改进方法
默然zxy
系统安全web安全安全测试工具javac++javascript
一、流程标准化与自动化制定统一审查标准明确代码风格、命名规范、安全要求等标准,减少主观判断偏差。使用自动化工具(如SonarQube、ESLint)集成到CI/CD流程中,自动检测代码异味和规范问题。分阶段审查机制初步检查:快速验证代码格式、注释完整性等基础规范,过滤低级错误。深度审查:聚焦逻辑正确性、安全漏洞、性能优化等核心问题,结合人工与工具交叉验证。二、分阶段与小批量工作模式小批量代码提交将
- Matlab交叉验证函数——crossvalind
bajiong1328
matlab
Generatecross-validationindices生成交叉验证索引Syntax语法Indices=crossvalind('Kfold',N,K)%K折交叉验证[Train,Test]=crossvalind('HoldOut',N,P)%将原始数据随机分为两组,一组做为训练集,一组做为验证集[Train,Test]=crossvalind('LeaveMOut',N,M)%留M法交叉
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的