C++智能指针 shared_ptr 与 weak_ptr 原理

  • 注:源代码摘自 GNU C++,除此之外为原创,转载请注明出处。

欢迎关注 [懒人漫说] 公众号,分享Java、Android、C/C++ 技术,
包括基础、自己遇到的问题解决过程。
在这里插入图片描述
当然如果关注并留言问题的话,我们力所能及的话会帮你解决并回复哟。我们和你一样,是正在成长的程序员,我们也会分享自己的成长路上的感想,希望可以和你一起努力成长。

// Copyright (C) 2007-2016 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. 

一、weak_ptr 的 lock() 函数原理

/*  当每次有新的 shared_ptr 生成时,会增加 _Sp_counted_base 的 _M_use_count (+1);
	当每次有新的 weak_ptr 生成时,会增加 _Sp_counted_base 的 _M_weak_count (+1);
	通过weak_ptr::lock()函数可以获取x对象的强引用(shared_ptr)。
	对应的,shared_ptr 析构时,会调用 _Sp_counted_base 的 _M_release 来使 _M_use_count (-1);
	weak_ptr 析构时,会调用 _Sp_counted_base 的 _M_release 来使 _M_weak_count (-1);
	当 _M_use_count 的数量为 0 的时候 就会释放,原始的对象(用户自定义对象) 的内存,但是不会释放 
	_Sp_counted_base 的内存。
	当  _M_use_count 和 _M_weak_count 都为 0的时候, 才会释放 _Sp_counted_base 的内存。
	所以将一个普通指针赋值给两个不同的shared_ptr对象会引发double free。
	eg: 
		int *n = new int(2);
		shared_ptr pn1(n);
		shared_ptr pn2(n);
		// pn1 和 pn2 内部保存的指针都是n,而且内部引用计数都为1,所以在离开作用域的时候两个指针都会发生析构并释放指向的内存n。
		尽量使用 shared_ptr pn = make_shared (2); 这种形式初始化一个shared_ptr指针。
	*/
/*
 *    此处引用 《Linux 多线程 服务端编程 使用 muduo C++ 网络库》 中对这两个智能指针的描述:
 *      1 shared_ptr 控制对象的生命期。shared_ptr 是强引用,只要有一个指向x对象的shared_ptr存在,该x对象就不会
 *   析构。当指向对象x的最后一个shared_ptr析构或reset()的时候,x保证会被销毁。
 *      2 weak_ptr 不控制对象的生命期,但是它知道对象是否还活着。如果对象还活着,那么它可以提升(promote)为有效的
 *   shared_ptr; 如果对象已经死了,提升会失败,返回一个空的shared_ptr。“提升/lock()” 行为是线程安全的。
 *      3 shared_ptr/weak_ptr 的“计数”在主流平台上是原子操作,没有用锁,性能不俗。
 *      4 shared_ptr/weak_ptr 的线程安全级别与 std::string和STL容器一样。
*/
	
	// __shared_count的构造函数会 new 一个 计数对象(_Sp_counted_base),但是__weak_count的构造函数不会new。
	__shared_count(_Ptr __p) : _M_pi(0)
	{
		__try {
			typedef typename std::tr1::remove_pointer<_Ptr>::type _Tp;
			_M_pi = new _Sp_counted_base_impl<_Ptr, _Sp_deleter<_Tp>, _Lp>(
				__p, _Sp_deleter<_Tp>());
				
		} __catch(...) {
			delete __p;
			__throw_exception_again;
		}
	}

	// lock 函数
	__shared_ptr<_Tp, _Lp> lock() const // never throws
		{
	#ifdef __GTHREADS
			// Optimization: avoid throw overhead.
			if (expired())
				return __shared_ptr();
	
			__try {
				return __shared_ptr(*this);
				
			} __catch(const bad_weak_ptr&) {
				return __shared_ptr();
			}
	
	#else
			// Optimization: avoid try/catch overhead when single threaded.
			return expired() ? __shared_ptr()
				: __shared_ptr(*this);
	
	#endif
		} // XXX MT
	
	bool  expired() const // never throws
	{
			return _M_refcount._M_get_use_count() == 0;
	}

二、类成员图:
C++智能指针 shared_ptr 与 weak_ptr 原理_第1张图片

三、下面源码有点长,不差资源分的话可以点击链接下载。
*注:所有的源码参看连接: http://download.csdn.net/download/u013005025/10155393

四、源码 (//version: Copyright © 2007-2016 Free Software Foundation, Inc.)

1 weak_ptr 源码
// weak_ptr
template
class weak_ptr
	: public __weak_ptr < _Tp >
{
public:
	weak_ptr()
		: __weak_ptr<_Tp>() { }

	template
	weak_ptr(const weak_ptr<_Tp1>& __r)
		: __weak_ptr<_Tp>(__r) { }

	template
	weak_ptr(const shared_ptr<_Tp1>& __r)
		: __weak_ptr<_Tp>(__r) { }

	template
	weak_ptr&
		operator=(const weak_ptr<_Tp1>& __r) // never throws
	{
		this->__weak_ptr<_Tp>::operator=(__r);
		return *this;
	}

	template
	weak_ptr& operator=(const shared_ptr<_Tp1>& __r) // never throws
	{
		this->__weak_ptr<_Tp>::operator=(__r);
		return *this;
	}

	shared_ptr<_Tp>	lock() const // never throws
	{
#ifdef __GTHREADS
		if (this->expired())
			return shared_ptr<_Tp>();

		__try{
			return shared_ptr<_Tp>(*this);
			
		}__catch(const bad_weak_ptr&){
			return shared_ptr<_Tp>();
		}
#else
		return this->expired() ? shared_ptr<_Tp>()
			: shared_ptr<_Tp>(*this);
#endif
	}
};
2  __weak_ptr 源码
template
class __weak_ptr
{
public:
	typedef _Tp element_type;

	__weak_ptr() : _M_ptr(0), _M_refcount() // never throws
	{ }
	
	template
	__weak_ptr(const __weak_ptr<_Tp1, _Lp>& __r)
		: _M_refcount(__r._M_refcount) // never throws
	{
		__glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>)
			_M_ptr = __r.lock().get();
	}

	template
	__weak_ptr(const __shared_ptr<_Tp1, _Lp>& __r)
		: _M_ptr(__r._M_ptr), _M_refcount(__r._M_refcount) // never throws
	{
		__glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>)
	}

	template
	__weak_ptr& operator=(const __weak_ptr<_Tp1, _Lp>& __r) // never throws
	{
		_M_ptr = __r.lock().get();
		_M_refcount = __r._M_refcount;
		return *this;
	}

	template
	__weak_ptr& operator=(const __shared_ptr<_Tp1, _Lp>& __r) // never throws
	{
		_M_ptr = __r._M_ptr;
		_M_refcount = __r._M_refcount;
		return *this;
	}

	__shared_ptr<_Tp, _Lp> lock() const // never throws
	{
#ifdef __GTHREADS
		// Optimization: avoid throw overhead.
		if (expired())
			return __shared_ptr();

		__try {
			return __shared_ptr(*this);
			
		} __catch(const bad_weak_ptr&) {
			return __shared_ptr();
		}

#else
		// Optimization: avoid try/catch overhead when single threaded.
		return expired() ? __shared_ptr()
			: __shared_ptr(*this);

#endif
	} // XXX MT

	long use_count() const // never throws
	{
		return _M_refcount._M_get_use_count();
	}

	bool expired() const // never throws
	{
		return _M_refcount._M_get_use_count() == 0;
	}

	void reset() // never throws
	{
		__weak_ptr().swap(*this);
	}

	void swap(__weak_ptr& __s) // never throws
	{
		std::swap(_M_ptr, __s._M_ptr);
		_M_refcount._M_swap(__s._M_refcount);
	}

private:
	// Used by __enable_shared_from_this.
	void _M_assign(_Tp* __ptr, const __shared_count<_Lp>& __refcount)
	{
		_M_ptr = __ptr;
		_M_refcount = __refcount;
	}

	template
	bool _M_less(const __weak_ptr<_Tp1, _Lp>& __rhs) const
	{
		return _M_refcount < __rhs._M_refcount;
	}

	template friend class __shared_ptr;
	template friend class __weak_ptr;
	friend class __enable_shared_from_this < _Tp, _Lp > ;
	friend class enable_shared_from_this < _Tp > ;

	// Friend injected into namespace and found by ADL.
	template
	friend inline bool
		operator<(const __weak_ptr& __lhs, const __weak_ptr<_Tp1, _Lp>& __rhs)
	{
		return __lhs._M_less(__rhs);
	}

	_Tp*           _M_ptr;         // Contained pointer.
	__weak_count<_Lp>  _M_refcount;    // Reference counter.
};
3 __weak_count 源码
template<_Lock_policy _Lp>
class __weak_count
{
public:
	__weak_count() : _M_pi(0) // nothrow
	{ }

	__weak_count(const __shared_count<_Lp>& __r)
		: _M_pi(__r._M_pi) // nothrow
	{
		if (_M_pi != 0)
			_M_pi->_M_weak_add_ref();
	}

	__weak_count(const __weak_count<_Lp>& __r)
		: _M_pi(__r._M_pi) // nothrow
	{
		if (_M_pi != 0)
			_M_pi->_M_weak_add_ref();
	}

	~__weak_count() // nothrow
	{
		if (_M_pi != 0)
			_M_pi->_M_weak_release();
	}

	__weak_count<_Lp>& operator=(const __shared_count<_Lp>& __r) // nothrow
	{
		_Sp_counted_base<_Lp>* __tmp = __r._M_pi;
		if (__tmp != 0)
			__tmp->_M_weak_add_ref();
		if (_M_pi != 0)
			_M_pi->_M_weak_release();
		_M_pi = __tmp;
		return *this;
	}

	__weak_count<_Lp>& operator=(const __weak_count<_Lp>& __r) // nothrow
	{
		_Sp_counted_base<_Lp>* __tmp = __r._M_pi;
		if (__tmp != 0)
			__tmp->_M_weak_add_ref();
		if (_M_pi != 0)
			_M_pi->_M_weak_release();
		_M_pi = __tmp;
		return *this;
	}

	void _M_swap(__weak_count<_Lp>& __r) // nothrow
	{
		_Sp_counted_base<_Lp>* __tmp = __r._M_pi;
		__r._M_pi = _M_pi;
		_M_pi = __tmp;
	}

	long _M_get_use_count() const // nothrow
	{
		return _M_pi != 0 ? _M_pi->_M_get_use_count() : 0;
	}

	friend inline bool
		operator==(const __weak_count<_Lp>& __a, const __weak_count<_Lp>& __b)
	{
		return __a._M_pi == __b._M_pi;
	}

	friend inline bool
		operator<(const __weak_count<_Lp>& __a, const __weak_count<_Lp>& __b)
	{
		return std::less<_Sp_counted_base<_Lp>*>()(__a._M_pi, __b._M_pi);
	}

private:
	friend class __shared_count < _Lp > ;

	_Sp_counted_base<_Lp>*  _M_pi;
};

五、shared_ptr 源码

// The actual shared_ptr, with forwarding constructors and
// assignment operators.
// shared_ptr
template
class shared_ptr
	: public __shared_ptr < _Tp >
{
public:
	shared_ptr()
		: __shared_ptr<_Tp>() { }

	template
	explicit
		shared_ptr(_Tp1* __p)
		: __shared_ptr<_Tp>(__p) { }

	template
	shared_ptr(_Tp1* __p, _Deleter __d)
		: __shared_ptr<_Tp>(__p, __d) { }

	template
	shared_ptr(const shared_ptr<_Tp1>& __r)
		: __shared_ptr<_Tp>(__r) { }

	template
	explicit
		shared_ptr(const weak_ptr<_Tp1>& __r)
		: __shared_ptr<_Tp>(__r) { }

#if (__cplusplus < 201103L) || _GLIBCXX_USE_DEPRECATED
	template
	explicit
		shared_ptr(std::auto_ptr<_Tp1>& __r)
		: __shared_ptr<_Tp>(__r) { }
#endif

	template
	shared_ptr(const shared_ptr<_Tp1>& __r, __static_cast_tag)
		: __shared_ptr<_Tp>(__r, __static_cast_tag()) { }

	template
	shared_ptr(const shared_ptr<_Tp1>& __r, __const_cast_tag)
		: __shared_ptr<_Tp>(__r, __const_cast_tag()) { }

	template
	shared_ptr(const shared_ptr<_Tp1>& __r, __dynamic_cast_tag)
		: __shared_ptr<_Tp>(__r, __dynamic_cast_tag()) { }

	template
	shared_ptr& operator=(const shared_ptr<_Tp1>& __r) // never throws
	{
		this->__shared_ptr<_Tp>::operator=(__r);
		return *this;
	}

#if (__cplusplus < 201103L) || _GLIBCXX_USE_DEPRECATED
	template
	shared_ptr& operator=(std::auto_ptr<_Tp1>& __r)
	{
		this->__shared_ptr<_Tp>::operator=(__r);
		return *this;
	}
#endif
};

// __shared_ptr
struct __static_cast_tag { };
struct __const_cast_tag { };
struct __dynamic_cast_tag { };
// A smart pointer with reference-counted copy semantics.  The
// object pointed to is deleted when the last shared_ptr pointing to
// it is destroyed or reset.
template
class __shared_ptr
{
public:
	typedef _Tp   element_type;

	__shared_ptr()
		: _M_ptr(0), _M_refcount() // never throws
	{ }

	template
	explicit __shared_ptr(_Tp1* __p)
		: _M_ptr(__p), _M_refcount(__p)
	{
		__glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>)
			typedef int _IsComplete[sizeof(_Tp1)];
		__enable_shared_from_this_helper(_M_refcount, __p, __p);
	}

	template
	__shared_ptr(_Tp1* __p, _Deleter __d)
		: _M_ptr(__p), _M_refcount(__p, __d)
	{
		__glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>)
			// TODO requires _Deleter CopyConstructible and __d(__p) well-formed
			__enable_shared_from_this_helper(_M_refcount, __p, __p);
	}

	//  generated copy constructor, assignment, destructor are fine.

	template
	__shared_ptr(const __shared_ptr<_Tp1, _Lp>& __r)
		: _M_ptr(__r._M_ptr), _M_refcount(__r._M_refcount) // never throws
	{
		__glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>)
	}

	template
	explicit
		__shared_ptr(const __weak_ptr<_Tp1, _Lp>& __r)
		: _M_refcount(__r._M_refcount) // may throw
	{
		__glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>)
			// It is now safe to copy __r._M_ptr, as _M_refcount(__r._M_refcount)
			// did not throw.
			_M_ptr = __r._M_ptr;
	}

#if (__cplusplus < 201103L) || _GLIBCXX_USE_DEPRECATED
	// Postcondition: use_count() == 1 and __r.get() == 0
	template
	explicit __shared_ptr(std::auto_ptr<_Tp1>& __r)
		: _M_ptr(__r.get()), _M_refcount()
	{ // TODO requries delete __r.release() well-formed
		__glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>)
			typedef int _IsComplete[sizeof(_Tp1)];
		_Tp1* __tmp = __r.get();
		_M_refcount = __shared_count<_Lp>(__r);
		__enable_shared_from_this_helper(_M_refcount, __tmp, __tmp);
	}

#endif

	template
	__shared_ptr(const __shared_ptr<_Tp1, _Lp>& __r, __static_cast_tag)
		: _M_ptr(static_cast(__r._M_ptr)),
		_M_refcount(__r._M_refcount)
	{ }

	template
	__shared_ptr(const __shared_ptr<_Tp1, _Lp>& __r, __const_cast_tag)
		: _M_ptr(const_cast(__r._M_ptr)),
		_M_refcount(__r._M_refcount)
	{ }

	template
	__shared_ptr(const __shared_ptr<_Tp1, _Lp>& __r, __dynamic_cast_tag)
		: _M_ptr(dynamic_cast(__r._M_ptr)),
		_M_refcount(__r._M_refcount)
	{
		if (_M_ptr == 0) // need to allocate new counter -- the cast failed
			_M_refcount = __shared_count<_Lp>();
	}

	template
	__shared_ptr& operator=(const __shared_ptr<_Tp1, _Lp>& __r) // never throws
	{
		_M_ptr = __r._M_ptr;
		_M_refcount = __r._M_refcount; // __shared_count::op= doesn't throw
		return *this;
	}

#if (__cplusplus < 201103L) || _GLIBCXX_USE_DEPRECATED
	template
	__shared_ptr& operator=(std::auto_ptr<_Tp1>& __r)
	{
		__shared_ptr(__r).swap(*this);
		return *this;
	}
#endif

	void reset() // never throws
	{
		__shared_ptr().swap(*this);
	}

	template
	void reset(_Tp1* __p) // _Tp1 must be complete.
	{
		// Catch self-reset errors.
		_GLIBCXX_DEBUG_ASSERT(__p == 0 || __p != _M_ptr);
		__shared_ptr(__p).swap(*this);
	}

	template
	void reset(_Tp1* __p, _Deleter __d)
	{
		__shared_ptr(__p, __d).swap(*this);
	}

	// Allow class instantiation when _Tp is [cv-qual] void.
	typename std::tr1::add_reference<_Tp>::type
		operator*() const // never throws
	{
		_GLIBCXX_DEBUG_ASSERT(_M_ptr != 0);
		return *_M_ptr;
	}

	_Tp* operator->() const // never throws
	{
		_GLIBCXX_DEBUG_ASSERT(_M_ptr != 0);
		return _M_ptr;
	}

	_Tp* get() const // never throws
	{
		return _M_ptr;
	}

	// Implicit conversion to "bool"
private:
	typedef _Tp* __shared_ptr::*__unspecified_bool_type;

public:
	operator __unspecified_bool_type() const // never throws
	{
		return _M_ptr == 0 ? 0 : &__shared_ptr::_M_ptr;
	}

	bool unique() const // never throws
	{
		return _M_refcount._M_unique();
	}

	long use_count() const // never throws
	{
		return _M_refcount._M_get_use_count();
	}

	void swap(__shared_ptr<_Tp, _Lp>& __other) // never throws
	{
		std::swap(_M_ptr, __other._M_ptr);
		_M_refcount._M_swap(__other._M_refcount);
	}

private:
	void* _M_get_deleter(const std::type_info& __ti) const
	{
		return _M_refcount._M_get_deleter(__ti);
	}

	template
	bool _M_less(const __shared_ptr<_Tp1, _Lp1>& __rhs) const
	{
		return _M_refcount < __rhs._M_refcount;
	}

	template friend class __shared_ptr;
	template friend class __weak_ptr;

	template
	friend _Del* get_deleter(const __shared_ptr<_Tp1, _Lp1>&);

	// Friends injected into enclosing namespace and found by ADL:
	template
	friend inline bool
		operator==(const __shared_ptr& __a, const __shared_ptr<_Tp1, _Lp>& __b)
	{
		return __a.get() == __b.get();
	}

	template
	friend inline bool
		operator!=(const __shared_ptr& __a, const __shared_ptr<_Tp1, _Lp>& __b)
	{
		return __a.get() != __b.get();
	}

	template
	friend inline bool
		operator<(const __shared_ptr& __a, const __shared_ptr<_Tp1, _Lp>& __b)
	{
		return __a._M_less(__b);
	}

	_Tp*             _M_ptr;         // Contained pointer.
	__shared_count<_Lp>  _M_refcount;    // Reference counter.
};


// __shared_count
template<_Lock_policy _Lp = __default_lock_policy>
class __shared_count
{
public:
	__shared_count()
		: _M_pi(0) // nothrow
	{ }

	template
	__shared_count(_Ptr __p) : _M_pi(0)
	{
		__try
		{
			typedef typename std::tr1::remove_pointer<_Ptr>::type _Tp;
			_M_pi = new _Sp_counted_base_impl<_Ptr, _Sp_deleter<_Tp>, _Lp>(
				__p, _Sp_deleter<_Tp>());
		}
		__catch(...)
		{
			delete __p;
			__throw_exception_again;
		}
	}

	template
	__shared_count(_Ptr __p, _Deleter __d) : _M_pi(0)
	{
		__try
		{
			_M_pi = new _Sp_counted_base_impl<_Ptr, _Deleter, _Lp>(__p, __d);
		}
		__catch(...)
		{
			__d(__p); // Call _Deleter on __p.
			__throw_exception_again;
		}
	}

	// Special case for auto_ptr<_Tp> to provide the strong guarantee.
	template
	explicit
		__shared_count(std::auto_ptr<_Tp>& __r)
		: _M_pi(new _Sp_counted_base_impl < _Tp*,
		_Sp_deleter<_Tp>, _Lp > (__r.get(), _Sp_deleter<_Tp>()))
	{
		__r.release();
	}

	// Throw bad_weak_ptr when __r._M_get_use_count() == 0.
	explicit __shared_count(const __weak_count<_Lp>& __r);

	~__shared_count() // nothrow
	{
		if (_M_pi != 0)
			_M_pi->_M_release();
	}

	__shared_count(const __shared_count& __r)
		: _M_pi(__r._M_pi) // nothrow
	{
		if (_M_pi != 0)
			_M_pi->_M_add_ref_copy();
	}

	__shared_count& operator=(const __shared_count& __r) // nothrow
	{
		_Sp_counted_base<_Lp>* __tmp = __r._M_pi;
		if (__tmp != _M_pi)
		{
			if (__tmp != 0)
				__tmp->_M_add_ref_copy();
			if (_M_pi != 0)
				_M_pi->_M_release();
			_M_pi = __tmp;
		}
		return *this;
	}

	void _M_swap(__shared_count& __r) // nothrow
	{
		_Sp_counted_base<_Lp>* __tmp = __r._M_pi;
		__r._M_pi = _M_pi;
		_M_pi = __tmp;
	}

	long _M_get_use_count() const // nothrow
	{
		return _M_pi != 0 ? _M_pi->_M_get_use_count() : 0;
	}

	bool _M_unique() const // nothrow
	{
		return this->_M_get_use_count() == 1;
	}

	friend inline bool
		operator==(const __shared_count& __a, const __shared_count& __b)
	{
		return __a._M_pi == __b._M_pi;
	}

	friend inline bool
		operator<(const __shared_count& __a, const __shared_count& __b)
	{
		return std::less<_Sp_counted_base<_Lp>*>()(__a._M_pi, __b._M_pi);
	}

	void* _M_get_deleter(const std::type_info& __ti) const
	{
		return _M_pi ? _M_pi->_M_get_deleter(__ti) : 0;
	}

private:
	friend class __weak_count < _Lp > ;

	_Sp_counted_base<_Lp>*  _M_pi;
};

// _Sp_counted_base
template<_Lock_policy _Lp = __default_lock_policy>
class _Sp_counted_base
	: public _Mutex_base < _Lp >
{
public:
	_Sp_counted_base()
		: _M_use_count(1), _M_weak_count(1) { }

	virtual	~_Sp_counted_base() // nothrow 
	{ }

	// Called when _M_use_count drops to zero, to release the resources
	// managed by *this.
	virtual void _M_dispose() = 0; // nothrow

	// Called when _M_weak_count drops to zero.
	virtual void _M_destroy() // nothrow
	{
		delete this;
	}

	virtual void* _M_get_deleter(const std::type_info&) = 0;

	void _M_add_ref_copy()
	{
		__gnu_cxx::__atomic_add_dispatch(&_M_use_count, 1);
	}

	void _M_add_ref_lock();

	void _M_release() // nothrow
	{
		// Be race-detector-friendly.  For more info see bits/c++config.
		_GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(&_M_use_count);
		if (__gnu_cxx::__exchange_and_add_dispatch(&_M_use_count, -1) == 1)
		{
			_GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(&_M_use_count);
			_M_dispose();
			// There must be a memory barrier between dispose() and destroy()
			// to ensure that the effects of dispose() are observed in the
			// thread that runs destroy().
			// See https://gcc.gnu.org/ml/libstdc++/2005-11/msg00136.html
			if (_Mutex_base<_Lp>::_S_need_barriers)
			{
				__atomic_thread_fence(__ATOMIC_ACQ_REL);
			}

			// Be race-detector-friendly.  For more info see bits/c++config.
			_GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(&_M_weak_count);
			if (__gnu_cxx::__exchange_and_add_dispatch(&_M_weak_count,
				-1) == 1)
			{
				_GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(&_M_weak_count);
				_M_destroy();
			}
		}
	}

	void _M_weak_add_ref() // nothrow
	{
		__gnu_cxx::__atomic_add_dispatch(&_M_weak_count, 1);
	}

	void _M_weak_release() // nothrow
	{
		// Be race-detector-friendly. For more info see bits/c++config.
		_GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(&_M_weak_count);
		if (__gnu_cxx::__exchange_and_add_dispatch(&_M_weak_count, -1) == 1)
		{
			_GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(&_M_weak_count);
			if (_Mutex_base<_Lp>::_S_need_barriers)
			{
				// See _M_release(),
				// destroy() must observe results of dispose()
				__atomic_thread_fence(__ATOMIC_ACQ_REL);
			}
			_M_destroy();
		}
	}

	long _M_get_use_count() const // nothrow
	{
		// No memory barrier is used here so there is no synchronization
		// with other threads.
		return const_cast(_M_use_count);
	}

private:
	_Sp_counted_base(_Sp_counted_base const&);
	_Sp_counted_base& operator=(_Sp_counted_base const&);

	_Atomic_word  _M_use_count;     // #shared
	_Atomic_word  _M_weak_count;    // #weak + (#shared != 0)
};

End ----------------------------------------------------------------------------------------------------

你可能感兴趣的:(C++)