【Windows Of CCPC HDU - 6708】【打表,找规律】

题意分析

HDU - 6708

题意:给出一个整数k,要求你输出一个长和宽均为2^k^ 的符合要求的矩阵。比如k等于1时输出
\[ \begin{matrix} C & C \\ P & C \end{matrix} \]k = 2时输出
\[ \begin{matrix} C & C & C & C \\ P & C & P & C \\ P & P & C & C \\ C & P & P & C \end{matrix} \]
样例乍一看好像是第一个矩阵规定为k=1这种样子,后一个矩阵则以前一个矩阵为基础,可以将矩阵平分为四块(竖着切和横着切),每一部分正好对应前一个矩阵的整体,只有左下角那一块例外,对应的是前一块矩阵的”反面“(也就是C变为P,P变为C),不过这样仍然没有什么思路,后来观察发现上一块矩阵的某一个元素刚好对应下一个矩阵的某一块元素,比如对于字母C,有
1698539-20190826092118108-339258886.png

对应下一个矩阵的
【Windows Of CCPC HDU - 6708】【打表,找规律】_第1张图片

对于字母P,有
1698539-20190826092207428-1916522697.png

对应下一个矩阵的
【Windows Of CCPC HDU - 6708】【打表,找规律】_第2张图片

这样根据它们的相对位置,就不难给出所有情况的矩阵了。具体位置关系在代码中给出。

AC代码

关于代码,的确有些冗长,感觉应该有其他更简便方法表示这种规律,欢迎大佬评论指出。

#include
#include
#include
#include
#include
using namespace std;
const int maxn = 1024 + 10;
int T, k;
char s1[maxn][maxn], s2[maxn][maxn], s3[maxn][maxn], s4[maxn][maxn], s5[maxn][maxn], s6[maxn][maxn], s7[maxn][maxn], s8[maxn][maxn], s9[maxn][maxn], s10[maxn][maxn];
void init()
{
    for(int i = 1; i <= 2; i++)
    {
        for(int j = 1; j <= 2; j++)
        {
            if(s1[i][j] == 'C')
            {
                //规律如下,此后的直接套用即可
                for(int k = (j-1)*2+1; k <= (j-1)*2+2; k++)           
                    s2[(i-1)*2+1][k] = 'C';
                s2[(i-1)*2+2][(j-1)*2+1] = 'P', s2[(i-1)*2+2][(j-1)*2+2] = 'C';
            }
            else 
            {
                for(int k = (j - 1)*2+1; k <= (j-1)*2+2; k++)
                    s2[(i-1)*2+1][k] = 'P';
                s2[(i-1)*2+2][(j-1)*2+1] = 'C', s2[(i-1)*2+2][(j-1)*2+2] = 'P';
            }
        }
    }
    for(int i = 1; i <= 4; i++)
    {
        for(int j = 1; j <= 4; j++)
        {
            if(s2[i][j] == 'C')
            {
                for(int k = (j - 1)*2+1; k <= (j-1)*2+2; k++)
                    s3[(i-1)*2+1][k] = 'C';
                s3[(i-1)*2+2][(j-1)*2+1] = 'P', s3[(i-1)*2+2][(j-1)*2+2] = 'C';
            }
            else 
            {
                for(int k = (j - 1)*2+1; k <= (j-1)*2+2; k++)
                    s3[(i-1)*2+1][k] = 'P';
                s3[(i-1)*2+2][(j-1)*2+1] = 'C', s3[(i-1)*2+2][(j-1)*2+2] = 'P';
            }
        }
    }
    for(int i = 1; i <= 8; i++)
    {
        for(int j = 1; j <= 8; j++)
        {
            if(s3[i][j] == 'C')
            {
                for(int k = (j - 1)*2+1; k <= (j-1)*2+2; k++)
                    s4[(i-1)*2+1][k] = 'C';
                s4[(i-1)*2+2][(j-1)*2+1] = 'P', s4[(i-1)*2+2][(j-1)*2+2] = 'C';
            }
            else 
            {
                for(int k = (j - 1)*2+1; k <= (j-1)*2+2; k++)
                    s4[(i-1)*2+1][k] = 'P';
                s4[(i-1)*2+2][(j-1)*2+1] = 'C', s4[(i-1)*2+2][(j-1)*2+2] = 'P';
            }
        }
    }
    for(int i = 1; i <= 16; i++)
    {
        for(int j = 1; j <= 16; j++)
        {
            if(s4[i][j] == 'C')
            {
                for(int k = (j - 1)*2+1; k <= (j-1)*2+2; k++)
                    s5[(i-1)*2+1][k] = 'C';
                s5[(i-1)*2+2][(j-1)*2+1] = 'P', s5[(i-1)*2+2][(j-1)*2+2] = 'C';
            }
            else 
            {
                for(int k = (j - 1)*2+1; k <= (j-1)*2+2; k++)
                    s5[(i-1)*2+1][k] = 'P';
                s5[(i-1)*2+2][(j-1)*2+1] = 'C', s5[(i-1)*2+2][(j-1)*2+2] = 'P';
            }
        }
    }
    for(int i = 1; i <= 32; i++)
    {
        for(int j = 1; j <= 32; j++)
        {
            if(s5[i][j] == 'C')
            {
                for(int k = (j - 1)*2+1; k <= (j-1)*2+2; k++)
                    s6[(i-1)*2+1][k] = 'C';
                s6[(i-1)*2+2][(j-1)*2+1] = 'P', s6[(i-1)*2+2][(j-1)*2+2] = 'C';
            }
            else 
            {
                for(int k = (j - 1)*2+1; k <= (j-1)*2+2; k++)
                    s6[(i-1)*2+1][k] = 'P';
                s6[(i-1)*2+2][(j-1)*2+1] = 'C', s6[(i-1)*2+2][(j-1)*2+2] = 'P';
            }
        }
    }
    for(int i = 1; i <= 64; i++)
    {
        for(int j = 1; j <= 64; j++)
        {
            if(s6[i][j] == 'C')
            {
                for(int k = (j - 1)*2+1; k <= (j-1)*2+2; k++)
                    s7[(i-1)*2+1][k] = 'C';
                s7[(i-1)*2+2][(j-1)*2+1] = 'P', s7[(i-1)*2+2][(j-1)*2+2] = 'C';
            }
            else 
            {
                for(int k = (j - 1)*2+1; k <= (j-1)*2+2; k++)
                    s7[(i-1)*2+1][k] = 'P';
                s7[(i-1)*2+2][(j-1)*2+1] = 'C', s7[(i-1)*2+2][(j-1)*2+2] = 'P';
            }
        }
    }
    for(int i = 1; i <= 128; i++)
    {
        for(int j = 1; j <= 128; j++)
        {
            if(s7[i][j] == 'C')
            {
                for(int k = (j - 1)*2+1; k <= (j-1)*2+2; k++)
                    s8[(i-1)*2+1][k] = 'C';
                s8[(i-1)*2+2][(j-1)*2+1] = 'P', s8[(i-1)*2+2][(j-1)*2+2] = 'C';
            }
            else 
            {
                for(int k = (j - 1)*2+1; k <= (j-1)*2+2; k++)
                    s8[(i-1)*2+1][k] = 'P';
                s8[(i-1)*2+2][(j-1)*2+1] = 'C', s8[(i-1)*2+2][(j-1)*2+2] = 'P';
            }
        }
    }
    for(int i = 1; i <= 256; i++)
    {
        for(int j = 1; j <= 256; j++)
        {
            if(s8[i][j] == 'C')
            {
                for(int k = (j - 1)*2+1; k <= (j-1)*2+2; k++)
                    s9[(i-1)*2+1][k] = 'C';
                s9[(i-1)*2+2][(j-1)*2+1] = 'P', s9[(i-1)*2+2][(j-1)*2+2] = 'C';
            }
            else 
            {
                for(int k = (j - 1)*2+1; k <= (j-1)*2+2; k++)
                    s9[(i-1)*2+1][k] = 'P';
                s9[(i-1)*2+2][(j-1)*2+1] = 'C', s9[(i-1)*2+2][(j-1)*2+2] = 'P';
            }
        }
    }
    for(int i = 1; i <= 512; i++)
    {
        for(int j = 1; j <= 512; j++)
        {
            if(s9[i][j] == 'C')
            {
                for(int k = (j - 1)*2+1; k <= (j-1)*2+2; k++)
                    s10[(i-1)*2+1][k] = 'C';
                s10[(i-1)*2+2][(j-1)*2+1] = 'P', s10[(i-1)*2+2][(j-1)*2+2] = 'C';
            }
            else 
            {
                for(int k = (j - 1)*2+1; k <= (j-1)*2+2; k++)
                    s10[(i-1)*2+1][k] = 'P';
                s10[(i-1)*2+2][(j-1)*2+1] = 'C', s10[(i-1)*2+2][(j-1)*2+2] = 'P';
            }
        }
    }
}
int main()
{
    // freopen("input.txt", "r", stdin);
    // freopen("output.txt", "w", stdout);
    memset(s1, 'C', sizeof(s1));
    cin >> T;
    s1[2][1] = 'P';
    init();
    while(T--)
    {
        cin >> k;
        for(int i = 1; i <= (int)(pow(2, k)); i++)
        {
            for(int j = 1; j <= (int)(pow(2, k)); j++)
            {
                if(k == 1)
                    cout << s1[i][j];
                else if(k == 2)
                    cout << s2[i][j];
                else if(k == 3)
                    cout << s3[i][j];
                else if(k == 4)
                    cout << s4[i][j];
                else if(k == 5)
                    cout << s5[i][j];
                else if(k == 6)
                    cout << s6[i][j];
                else if(k == 7)
                    cout << s7[i][j];
                else if(k == 8)
                    cout << s8[i][j];
                else if(k == 9)
                    cout << s9[i][j];
                else if(k == 10)
                    cout << s10[i][j];
            }
            cout << endl;
        }
    }
}

转载于:https://www.cnblogs.com/KeepZ/p/11410573.html

你可能感兴趣的:(【Windows Of CCPC HDU - 6708】【打表,找规律】)