Java线程池的使用

本文转载自http://www.cnblogs.com/dolphin0520/p/3932921.html

如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间。

  那么有没有一种办法使得线程可以复用,就是执行完一个任务,并不被销毁,而是可以继续执行其他的任务?

  在Java中可以通过线程池来达到这样的效果。今天我们就来详细讲解一下Java的线程池,首先我们从最核心的ThreadPoolExecutor类中的方法讲起,然后再讲述它的实现原理,接着给出了它的使用示例,最后讨论了一下如何合理配置线程池的大小。

一.Java中的ThreadPoolExecutor类

java.uitl.concurrent.ThreadPoolExecutor类是线程池中最核心的一个类,因此如果要透彻地了解Java中的线程池,必须先了解这个类。下面我们来看一下ThreadPoolExecutor类的具体实现源码。

  在ThreadPoolExecutor类中提供了四个构造方法:

public class ThreadPoolExecutor extends AbstractExecutorService {
    .....
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
            BlockingQueue workQueue);
 
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
            BlockingQueue workQueue,ThreadFactory threadFactory);
 
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
            BlockingQueue workQueue,RejectedExecutionHandler handler);
 
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
        BlockingQueue workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler);
    ...
}

从上面的代码可以得知,ThreadPoolExecutor继承了AbstractExecutorService类,并提供了四个构造器,事实上,通过观察每个构造器的源码具体实现,发现前面三个构造器都是调用的第四个构造器进行的初始化工作。

   下面解释下一下构造器中各个参数的含义:

  • corePoolSize:核心池的大小,这个参数跟后面讲述的线程池的实现原理有非常大的关系。在创建了线程池后,默认情况下,线程池中并没有任何线程,而是等待有任务到来才创建线程去执行任务,除非调用了prestartAllCoreThreads()或者prestartCoreThread()方法,从这2个方法的名字就可以看出,是预创建线程的意思,即在没有任务到来之前就创建corePoolSize个线程或者一个线程。默认情况下,在创建了线程池后,线程池中的线程数为0,当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中;
  • maximumPoolSize:线程池最大线程数,这个参数也是一个非常重要的参数,它表示在线程池中最多能创建多少个线程;
  • keepAliveTime:表示线程没有任务执行时最多保持多久时间会终止。默认情况下,只有当线程池中的线程数大于corePoolSize时,keepAliveTime才会起作用,直到线程池中的线程数不大于corePoolSize,即当线程池中的线程数大于corePoolSize时,如果一个线程空闲的时间达到keepAliveTime,则会终止,直到线程池中的线程数不超过corePoolSize。但是如果调用了allowCoreThreadTimeOut(boolean)方法,在线程池中的线程数不大于corePoolSize时,keepAliveTime参数也会起作用,直到线程池中的线程数为0;
  • unit:参数keepAliveTime的时间单位,有7种取值,在TimeUnit类中有7种静态属性:
TimeUnit.DAYS;               //天
TimeUnit.HOURS;             //小时
TimeUnit.MINUTES;           //分钟
TimeUnit.SECONDS;           //秒
TimeUnit.MILLISECONDS;      //毫秒
TimeUnit.MICROSECONDS;      //微妙
TimeUnit.NANOSECONDS;       //纳秒
  • workQueue:一个阻塞队列,用来存储等待执行的任务,这个参数的选择也很重要,会对线程池的运行过程产生重大影响,一般来说,这里的阻塞队列有以下几种选择:
ArrayBlockingQueue;基于数组的先进先出队列,此队列创建时必须指定大小;
LinkedBlockingQueue;基于链表的先进先出队列,如果创建时没有指定此队列大小,则默认为Integer.MAX_VALUE;
SynchronousQueue;直接新建一个线程来执行新来的任务。当创建的线程数大于maximumPoolSize时,便拒绝接收任务

ArrayBlockingQueue使用较少,一般使用LinkedBlockingQueue和Synchronous。LinkedBlockingQueue使用Integer.MAX_VALUE的话,则maximumPoolSize值便无意义,直接设置成跟corePoolSize相同即可。线程池的排队策略与BlockingQueue有关。

  • threadFactory:线程工厂,主要用来创建线程;
  • handler:表示当拒绝处理任务时的策略,有以下四种取值:
ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常。 
ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。 
ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)
ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务 

从上面给出的ThreadPoolExecutor类的代码可以知道,ThreadPoolExecutor继承了AbstractExecutorService,我们来看一下AbstractExecutorService的实现:

public abstract class AbstractExecutorService implements ExecutorService {
    protected  RunnableFuture newTaskFor(Runnable runnable, T value) { };
    protected  RunnableFuture newTaskFor(Callable callable) { };
    public Future submit(Runnable task) {};
    public  Future submit(Runnable task, T result) { };
    public  Future submit(Callable task) { };
    private  T doInvokeAny(Collection> tasks,
                            boolean timed, long nanos)
        throws InterruptedException, ExecutionException, TimeoutException {
    };
    public  T invokeAny(Collection> tasks)
        throws InterruptedException, ExecutionException {
    };
    public  T invokeAny(Collection> tasks,
                           long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException {
    };
    public  List> invokeAll(Collection> tasks)
        throws InterruptedException {
    };
    public  List> invokeAll(Collection> tasks,
                                         long timeout, TimeUnit unit)
        throws InterruptedException {
    };
}

AbstractExecutorService是一个抽象类,它实现了ExecutorService接口。

  我们接着看ExecutorService接口的实现:

public interface ExecutorService extends Executor {
    void shutdown();
    boolean isShutdown();
    boolean isTerminated();
    boolean awaitTermination(long timeout, TimeUnit unit)
        throws InterruptedException;
     Future submit(Callable task);
     Future submit(Runnable task, T result);
    Future submit(Runnable task);
     List> invokeAll(Collection> tasks)
        throws InterruptedException;
     List> invokeAll(Collection> tasks,
                                  long timeout, TimeUnit unit)
        throws InterruptedException;
 
     T invokeAny(Collection> tasks)
        throws InterruptedException, ExecutionException;
     T invokeAny(Collection> tasks,
                    long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;
}

而ExecutorService又是继承了Executor接口,我们看一下Executor接口的实现:

public interface Executor {
    void execute(Runnable command);
}

到这里,大家应该明白了ThreadPoolExecutor、AbstractExecutorService、ExecutorService和Executor几个之间的关系了。

  Executor是一个顶层接口,在它里面只声明了一个方法execute(Runnable),返回值为void,参数为Runnable类型,从字面意思可以理解,就是用来执行传进去的任务的;

  然后ExecutorService接口继承了Executor接口,并声明了一些方法:submit、invokeAll、invokeAny以及shutDown等;

  抽象类AbstractExecutorService实现了ExecutorService接口,基本实现了ExecutorService中声明的所有方法;

  然后ThreadPoolExecutor继承了类AbstractExecutorService。

  在ThreadPoolExecutor类中有几个非常重要的方法:

execute()
submit()
shutdown()
shutdownNow()

execute()方法实际上是Executor中声明的方法,在ThreadPoolExecutor进行了具体的实现,这个方法是ThreadPoolExecutor的核心方法,通过这个方法可以向线程池提交一个任务,交由线程池去执行。

  submit()方法是在ExecutorService中声明的方法,在AbstractExecutorService就已经有了具体的实现,在ThreadPoolExecutor中并没有对其进行重写,这个方法也是用来向线程池提交任务的,但是它和execute()方法不同,它能够返回任务执行的结果,去看submit()方法的实现,会发现它实际上还是调用的execute()方法,只不过它利用了Future来获取任务执行结果(Future相关内容将在下一篇讲述)。

  shutdown()和shutdownNow()是用来关闭线程池的。

  还有很多其他的方法:

  比如:getQueue() 、getPoolSize() 、getActiveCount()、getCompletedTaskCount()等获取与线程池相关属性的方法,有兴趣的朋友可以自行查阅API。

二、线程池的状态

在ThreadPoolExecutor中定义了一个volatile变量,另外定义了几个static final变量表示线程池的各个状态:

volatile int runState;
static final int RUNNING    = 0;
static final int SHUTDOWN   = 1;
static final int STOP       = 2;
static final int TERMINATED = 3;

runState表示当前线程池的状态,它是一个volatile变量用来保证线程之间的可见性;

  下面的几个static final变量表示runState可能的几个取值。

  当创建线程池后,初始时,线程池处于RUNNING状态;

  如果调用了shutdown()方法,则线程池处于SHUTDOWN状态,此时线程池不能够接受新的任务,它会等待所有任务执行完毕;

  如果调用了shutdownNow()方法,则线程池处于STOP状态,此时线程池不能接受新的任务,并且会去尝试终止正在执行的任务;

  当线程池处于SHUTDOWN或STOP状态,并且所有工作线程已经销毁,任务缓存队列已经清空或执行结束后,线程池被设置为TERMINATED状态。

下面是一个简单的线程池例子

package com.xiaobaizhiqian;

import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.RejectedExecutionException;
import java.util.concurrent.RejectedExecutionHandler;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class ThreadPoolExecutorTest {

	public static void main(String[] args) {
		
		/** 核心池大小(核心池中线程数量) */
		int corePoolSize = 5;
		
		/** 核心池中线程的最大数量() */
		int maximumPoolSize = 10;
		
		/** 当线程池中线程未使用时,多长时间关闭 */
		int keepAliveTime = 200;
		
		/** 时间单位
		 * TimeUnit.DAYS;               //天
		 * TimeUnit.HOURS;             //小时
		 * TimeUnit.MINUTES;           //分钟
		 * TimeUnit.SECONDS;           //秒
		 * TimeUnit.MILLISECONDS;      //毫秒
		 * TimeUnit.MICROSECONDS;      //微妙
		 * TimeUnit.NANOSECONDS;       //纳秒
		 */
		TimeUnit unit = TimeUnit.MILLISECONDS;
		
		/** 阻塞队列,只有当阻塞队列放满时,线程池才会创建大于corePoolSize小于等于maximumPoolSize个线程
		 * ArrayBlockingQueue;基于数组的先进先出队列,此队列创建时必须指定大小;
		 * LinkedBlockingQueue;基于链表的先进先出队列,如果创建时没有指定此队列大小,则默认为Integer.MAX_VALUE;
		 * SynchronousQueue;直接新建一个线程来执行新来的任务。当创建的线程数大于maximumPoolSize时,便拒绝接收任务
		 */
		BlockingQueue blockingQueue = new LinkedBlockingQueue(5);
		
		/** 拒绝策略,当线程池大小大于maximumPoolSize加blockingQueue时,会使用拒绝策略
		 * ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常。 
		 * ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。 
		 * ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)
		 * ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务
		 */
		RejectedExecutionHandler handler = new ThreadPoolExecutor.AbortPolicy();
		
		// 创建线程池
		ThreadPoolExecutor executor = new ThreadPoolExecutor(corePoolSize, maximumPoolSize, keepAliveTime,
				unit,blockingQueue, handler);
		int i = 0;
		try {
			for (; i < 15; i++) {
				MyTask myTask = new MyTask(i);
				executor.execute(myTask);
				System.out.println("线程池中线程数目:" + executor.getPoolSize()
						+ ",队列中等待执行的任务数目:" + executor.getQueue().size()
						+ ",已执行玩别的任务数目:" + executor.getCompletedTaskCount());
			}
		} catch (RejectedExecutionException e) {
			System.err.println("第" + i +"个线程超出线程池最大数量");
		} finally {
			executor.shutdown();
		}
	}

}

class MyTask implements Runnable {
    private int taskNum;
     
    public MyTask(int num) {
        this.taskNum = num;
    }
     
    @Override
    public void run() {
        System.out.println("正在执行task "+taskNum);
        try {
            Thread.currentThread();
			Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("task "+taskNum+"执行完毕");
    }
}

 

你可能感兴趣的:(java基础)