- 基于opencv消除图片马赛克
小苗爸爸
opencv人工智能计算机视觉
以下是一个基于Python的图片马赛克消除函数实现,结合了图像处理和深度学习方法。由于马赛克消除涉及复杂的图像重建任务,建议根据实际需求选择合适的方法:importcv2importnumpyasnpfromPILimportImagedefremove_mosaic(image_path,output_path,method='traditional',block_size=10,scale_f
- 【python数据挖掘之numpy】-数组及对象属性和数据转换
sc.溯琛
python数据挖掘numpy
Numpy是一个Python库,用于处理多维数组和矩阵,以及针对这些数组执行数学运算的函数。它提供了高效的数组对象和相关的操作,可以用于快速处理大量数据。Numpy的主要功能包括:创建数组、数组运算、数组索引和切片、线性代数、随机数生成等。Numpy在科学计算、数据分析、机器学习等领域都广泛应用。tips:(本博文在jupyter中实训)目录一、创建数组对象1.array()函数来创建数组的对象2
- 【数据挖掘】NumPy的索引与切片(Indexing & Slicing)
dundunmm
机器学习数据挖掘pythonnumpy数据挖掘机器学习
NumPyndarray的索引与切片(Indexing&Slicing)NumPy提供灵活高效的索引与切片方式,支持一维、二维、多维数组的访问与操作。1️⃣索引(Indexing)索引用于访问NumPy数组中的单个元素。一维数组索引importnumpyasnparr=np.array([10,20,30,40,50])print(arr[0])#访问第1个元素->10print(arr[-1])
- 【数据分析之道-NumPy(二)】多种方式创建数组_创建一个3行4列的二维数组(1)
2401_84159839
程序员数据分析numpy数据挖掘
专栏导读✍作者简介:i阿极,CSDNPython领域新星创作者,专注于分享python领域知识。✍本文录入于《数据分析之道》,本专栏针对大学生、初级数据分析工程师精心打造,对python基础知识点逐一击破,不断学习,提升自我。✍订阅后,可以阅读《数据分析之道》中全部文章内容,包含python基础语法、数据结构和文件操作,科学计算,实现文件内容操作,实现数据可视化等等。✍还可以订阅进阶篇《数据分析之
- 常用Python数据分析库详解
weixin_34092370
pythonshell
Python之所以这么流行,这么好用,就是因为Python提供了大量的第三方的库,开箱即用,非常方便,而且还免费哦,学Python的同学里估计有30%以上是为了做数据分析师或者数据挖掘,所以数据分析相关的库一定要熟悉,那么常用的Python数据分析库有哪些呢?1.NumPyNumPy是Python科学计算的基础包,它提供:1).快速高效的多维数组对象ndarray;2).直接对数组执行数学运算及对
- 推荐收藏!数据分析必会的 10 个 python 库!
Python数据挖掘
深度学习机器学习数据分析及可视化数据分析python数据挖掘算法
大家好,今天给大家分享除了基本的NumPy、Pandas和Matplotlib之外的10个流行的数据分析Python库。文末提供资料和技术交流Scikit-learnScikit-learn是一个功能强大的机器学习库,为监督和无监督学习、模型选择和预处理提供了广泛的算法。Scikit-learn简化了构建机器学习模型的过程,使其成为数据科学家和分析师的热门选择。可以通过pip命令来进行安装。pip
- Python | Pytorch | Tensor知识点总结
漂亮_大男孩
Python拾遗pythonpytorch深度学习人工智能
如是我闻:Tensor是我们接触Pytorch了解到的第一个概念,这里是一个关于PyTorchTensor主题的知识点总结,涵盖了Tensor的基本概念、创建方式、运算操作、梯度计算和GPU加速等内容。1.Tensor基本概念Tensor是PyTorch的核心数据结构,类似于NumPy的ndarray,但支持GPU加速和自动求导。PyTorch的Tensor具有动态计算图,可用于深度学习模型的前向
- [自然语言处理基础]NumPy基本操作
Steve lu
自然语言处理NLP自然语言处理numpypythonconda人工智能机器学习深度学习
什么是NumPyNumPy是Python中科学计算的基本包。它是一个Python库,提供多维数组对象、各种派生对象(如掩码数组和矩阵)以及用于对数组进行快速操作的各种例程,包括数学、逻辑、形状操作、排序、选择、I/O、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。NumPy数组在创建时具有固定大小,这与Python列表(可以动态增长)不同。更改数组的大小ndarray将创建新数组并删除
- 认识pandas
才不是小emo的小杨
pandaspandas
1认识pandasPandas是一个开源的第三方Python库,从Numpy和Matplotlib的基础上构建而来,享有数据分析“三剑客之一”的盛名(NumPy、Matplotlib、Pandas)。Pandas已经成为Python数据分析的必备高级工具,它的目标是成为强大、灵活、可以支持任何编程语言的数据分析工具。1.1pandas主要特点Pandas主要包括以下几个特点:它提供了一个简单、高效
- 基于tensorflow使用VGG16实现猫狗识别
Jakari
tensorflowpython
importtensorflowastfimportnumpyasnpfromtensorflow.kerasimportlayers,models,optimizersfromtensorflow.keras.preprocessing.imageimportImageDataGenerator#定义VGG16模型classVGG16(tf.keras.Model):def__init__(se
- 基于PyTorch的深度学习2——Numpy与Tensor
Wis4e
深度学习pytorchnumpy
Tensor自称为神经网络界的Numpy,它与Numpy相似,二者可以共享内存,且之间的转换非常方便和高效。不过它们也有不同之处,最大的区别就是Numpy会把ndarray放在CPU中进行加速运算,而由Torch产生的Tensor会放在GPU中进行加速运算。1.创建创建Tensor的方法有很多,可以从列表或ndarray等类型进行构建,也可根据指定的形状构建。importtorch#根据list数
- 如何在Python用Plot画出一个简单的机器人模型
独坐寒江边
机器人轨迹规划python机器人开发语言
如何在Python中使用Plot画出一个简单的模型在下面的程序中,首先要知道机器人的DH参数,然后计算出每一个关节的位置,最后利用plot函数画出关节之间的连杆就可以了,最后利用animation库来实现一个动画效果。importmatplotlib.pyplotaspltimportnumpyasnpimportmatplotlib.pyplotaspltimportnumpyasnpfromI
- python segmentation fault是什么意思-A Python Segmentation Fault?
weixin_37988176
ThisgeneratesaSegmentationFault:11andIhavenocluewhy.BeforeIgetintoit,here'sthecode:importnumpy.randomasnprndimportheapqimportsyssys.setrecursionlimit(10**6)defrlist(size,limit_low,limit_high):for_inxr
- 一个色条可用于多个散点图
潮易
chrome
一个色条可用于多个散点图在Python中,使用matplotlib库绘制多个散点图时,可以使用循环来重复生成相同的图表,然后修改数据以显示不同分布的数据。以下是一个详细步骤的代码示例:```pythonimportmatplotlib.pyplotaspltimportnumpyasnp#创建一个色条对象cax=ax2.inset_axes([0,0,1,0.5])norm=matplotlib.
- python学生分布_python统计函数库scipy.stats的用法解析
weixin_39967096
python学生分布
背景总结统计工作中几个常用用法在python统计函数库scipy.stats的使用范例。正态分布以正态分布的常见需求为例了解scipy.stats的基本使用方法。1.生成服从指定分布的随机数norm.rvs通过loc和scale参数可以指定随机变量的偏移和缩放参数,这里对应的是正态分布的期望和标准差。size得到随机数数组的形状参数。(也可以使用np.random.normal(loc=0.0,s
- python统计函数库_python统计函数库scipy.stats的用法1/3
颜卿Lydia
python统计函数库
背景总结统计工作中几个常用用法在python统计函数库scipy.stats的使用范例。正态分布以正态分布的常见需求为例了解scipy.stats的基本使用方法。生成服从指定分布的随机数norm.rvs通过loc和scale参数可以指定随机变量的偏移和缩放参数,这里对应的是正态分布的期望和标准差。size得到随机数数组的形状参数。(也可以使用np.random.normal(loc=0.0,sca
- 机器学习——KNN算法实战—手写数字识别
巷955
机器学习算法人工智能
原理简述:KNN算法是机器学习中的一种基础的分类回归算法,选择距离自己最近的几条数据,依据最邻近的数据性质来估测自身的性质。下面我们开始实战,制作手写数字识别模型:一、cv2创建模型1、导入相关的库,这里我们用numpy和cv2两个库importnumpyasnpimportcv22、导入数据,并转化灰度图像img=cv2.imread('digits.png')gray=cv2.cvtColor
- 使用pytorch和opencv根据颜色相似性提取图像
深蓝海拓
机器视觉和人工智能学习opencv学习笔记pytorchopencv人工智能
需求:将下图中的花朵提取出来。代码:importcv2importtorchimportnumpyasnpimporttimedefget_similar_colors(image,color_list,threshold):#将图像和颜色列表转换为torch张量device=torch.device('cuda'iftorch.cuda.is_available()else'cpu')image
- Python之使用动态导包优化软件加载速度
Sherry Wangs
Python开发实践python开发语言
在开发大型Python软件时,可能会遇到以下问题:由于静态导入了大量模块,导致软件启动时间过长,用户体验不佳。例如,一个复杂的桌面应用程序或Web服务可能依赖于多个大型库(如numpy、pandas、torch或Yolo),这些库在启动时被静态导入,即使某些功能模块在启动时并不需要立即使用。这种情况下,静态导入会显著增加软件的启动时间,故使用动态导入。文章目录1.静态导入(StaticImport
- 【数据挖掘】Matplotlib
dundunmm
数据挖掘数据挖掘人工智能matplotlibpython
Matplotlib是Python最常用的数据可视化库之一,在数据挖掘过程中,主要用于数据探索(EDA)、趋势分析、模式识别和结果展示。1.Matplotlib基础1.1安装&导入#如果未安装Matplotlib,请先安装#pipinstallmatplotlibimportmatplotlib.pyplotaspltimportnumpyasnp1.2基本绘图x=np.linspace(0,10
- 嵌入式综合-心得与笔记【1】
sakura_sea
EmbeddedsystemandHPC嵌入式
文章目录时域信号时域转频域信号傅里叶变换将时域信号转换为频域信号快速傅里叶变换FFT计算离散傅里叶变换参考文献时域信号importnumpyasnpimportmatplotlib.pyplotasplt#设置Matplotlib支持中文plt.rcParams['font.sans-serif']=['SimHei']#设置字体为SimHeiplt.rcParams['axes.unicode_
- pip指令及其用法
大侠升
指令大全pip
pip是Python的包管理工具,用于安装、升级和管理Python包。下面是一些常用的pip指令及其用法:1.安装包安装一个包,默认从PyPI安装:pipinstall例如:pipinstallnumpy2.安装指定版本的包安装指定版本的包:pipinstall==例如:pipinstallnumpy==1.19.33.升级包升级已安装的包到最新版本:pipinstall--upgrade例如:p
- Python 3D爱心(Maptlotlib)
一一代码
3dpython
importnumpyasnpimportmatplotlib.pyplotaspltfrommpl_toolkits.mplot3dimportAxes3Dfig=plt.figure()ax=fig.add_subplot(111,projection='3d')x=np.linspace(-2,2,100)y=np.linspace(-2,2,100)x,y=np.meshgrid(x,y)
- Python NumPy 深度解析:科学计算的得力助手
tekin
Python高阶工坊pythonnumpy科学计算
PythonNumPy深度解析:科学计算的得力助手在Python数据科学和科学计算领域,NumPy是一个核心且基础的库。它提供了强大的多维数组对象以及用于处理这些数组的各种工具,包括高效的数学运算、线性代数操作、随机数生成等功能。本文将全方位详细介绍NumPy,从数组的创建、操作到高级应用,深入探讨索引和切片操作、广播机制等重要特性,还会对NumPy与其他可选计算方式进行比较,帮助读者深入理解并掌
- 卷积核在初始阶段的数据是怎么获取的
abments
人工智能深度学习人工智能
卷积核的初始化随机初始化:在大多数情况下,卷积核(滤波器)的权重在模型训练开始时是随机初始化的。常用的随机初始化方法包括以下几种:均匀分布初始化:权重从一个均匀分布中抽取值。importnumpyasnp#初始化3x3卷积核,权重范围[-0.1,0.1]kernel=np.random.uniform(-0.1,0.1,(3,3))正态分布初始化:权重从一个均值为0、标准差较小的正态分布中抽取。i
- 2.2.1.2-网格交易(python网格交易附实战交易记录)
Kelvin写代码
投资python投资网格交易交易记录实证
跳转到根目录:知行合一:投资篇已完成:1、投资&技术 1.1.1投资-编程基础-numpy 1.1.2投资-编程基础-pandas 1.2金融数据处理 1.3金融数据可视化2、投资方法论 2.1.1预期年化收益率 2.1.2一个关于y=ax+b的故事 2.1.3-数据标准化 2.1.4-相关性分析 2.2.1.1-一个关于定投的故(姿)事(势) 2.2.1.2-网格交易 2.
- 安装Python_PCL点云库
FqLibrary
python开发语言点云
Python_PCL是Python语言的一个点云库,它提供了一组用于处理和分析点云数据的工具和函数。本文将介绍如何安装和配置Python_PCL点云库,并提供相应的源代码示例。Python_PCL的安装步骤如下:步骤1:安装依赖库在安装Python_PCL之前,我们需要先安装一些依赖库。打开终端或命令提示符,运行以下命令来安装依赖库:pipinstallnumpypipinstallctypesp
- 【数据挖掘】Pandas
dundunmm
数据挖掘数据挖掘pandas人工智能
Pandas是Python进行数据挖掘和数据分析的核心库之一,提供了强大的数据清洗、预处理、转换、分析和可视化功能。它通常与NumPy、Matplotlib、Seaborn、Scikit-Learn等库结合使用,帮助构建高效的数据挖掘流程。1.读取数据Pandas支持多种数据格式,如CSV、Excel、JSON、SQL、Parquet等。importpandasaspd#读取CSV文件df=pd.
- 在Python中高效操作三维和四维数组相乘:人工智能基础 NumPy部分
秋.
pythonnumpy开发语言人工智能
一、前言在深度学习、科学计算和数据分析领域,处理高维数组是家常便饭。本文将深入探讨三维和四维数组的相乘操作,通过NumPy库演示各种实用技巧。二、核心概念梳理1.数组维度理解三维数组:(层,行,列)可理解为多个二维矩阵的堆叠四维数组:(批次大小,通道数,高度,宽度)常见于图像处理2.关键函数对比函数特性说明支持维度np.multiply元素级相乘任意np.dot标准矩阵点积≤2np.matmul广
- Anaconda的详细配置过程(附图)
椰卤工程师
机器学习anacondatensorflow
Anaconda是Python的一个科学计算发行库,内置了上千个Python经常会用到的库,包括Scikit-learn、Numpy、Scipy、Pandas等。1.Anaconda下载下载地址:https://www.anaconda.com/download/官网下载速度很慢,慎用!建议通过国内镜像网站下载。Anaconda是跨平台的,有Windows、macOS、Linux版本,博主这里以W
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag