elasticsearch学习三:IK分词器

1.ElasticSearch相关概念:

        Elasticsearch是面向文档(document oriented)的,这意味着它可以存储整个对象或文档(document)。然而它不仅仅是存储,还会索引(index)每个文档的内容使之可以被搜索。在Elasticsearch中,你可以对文档进行索引、搜索、排序、过滤

1.1 集群 cluster

        一个集群就是由一个或多个节点组织在一起,它们共同持有整个的数据,并一起提供索引和搜索功能。一个集群由一个唯一的名字标识,这个名字默认就是“elasticsearch”。这个名字是重要的,因为一个节点只能通过指定某个集群的名字,来加入这个集群。

 elasticsearch学习三:IK分词器_第1张图片

1.2 节点 node 

       一个节点是集群中的一个服务器,作为集群的一部分,它存储数据,参与集群的索引和搜索功能。

1.3 索引 index

      一个拥有几分相似特征的文档的集合,类似 数据库(database)

1.4 类型 type

      在一个索引中,可以定义一种或多种类型,类似表(tables)

1.5 文档 document

     是一个可被索引的基础信息单元,类似行(rows)

1.6 分片 

     一个索引可以存储超出单个节点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。为了解决这个问题,Elasticsearch提供了将索引划分成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上

1.7 映射 mapping

      mapping是处理数据的方式和规则方面做一些限制,如某个字段的数据类型、默认值、分析器、是否被索引等等,这些都是映

射里面可以设置的,其它就是处理es里面数据的一些使用规则设置也叫做映射,按着最优规则处理数据对性能提高很大,因此才

需要建立映射,并且需要思考如何建立映射才能对性能更好?和建立表结构表关系数据库三范式类似

1.8 创建索引库默认多少分片和多少副本

       如果你创建索引,那么索引将会有个5个分片 ( primary shard ,又称主分片 ) 构成的,每一个主分片会有一个 副本 ( replica shard ,又称复制分片 )

elasticsearch学习三:IK分词器_第2张图片

2. ik分词器

     
分词:即把一段中文或者别的划分成一个个的关键字,我们在搜索时候会把自己的信息进行分词,会把数据库中或者索引库中的数据进行分词,然后进行一个匹配操作,默认的中文分词是将每个字看成一个词
       IKAnalyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包。从2006年12月推出1.0版开始,IKAnalyzer已经

推出 了3个大版本。最初,它是以开源项目Lucene为应用主体的,结合词典分词和文法分析算法的中文分词组件。新版本的

IKAnalyzer3.0则发展为 面向Java的公用分词组件,独立于Lucene项目,同时提供了对Lucene的默认优化实现。

IK分词器3.0的特性如下:

1)采用了特有的“正向迭代最细粒度切分算法“,具有60万字/秒的高速处理能力。

2)采用了多子处理器分析模式,支持:英文字母(IP地址、Email、URL)、数字(日期,常用中文数量词,罗马数字,科学计数法),中文词汇(姓名、地名处理)等分词处理。

3)对中英联合支持不是很好,在这方面的处理比较麻烦.需再做一次查询,同时是支持个人词条的优化的词典存储,更小的内存占用。

4)支持用户词典扩展定义。

5)针对Lucene全文检索优化的查询分析器IKQueryParser;采用歧义分析算法优化查询关键字的搜索排列组合,能极大的提高Lucene检索的命中率。

IK 提供了两个分词算法:
 
ik_smart ik_max_word ,其中 ik_smart 为最少切分, ik_max_word 为最细 粒度划分!

 

elasticsearch学习三:IK分词器_第3张图片

你可能感兴趣的:(elasticsearch)