本篇博客主要内容来自《深入理解Java虚拟机:JVM高级特性与最佳实践(第3版)》
程序计数器(Program Counter Register)是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示器
每个方法被执行的时候,Java虚拟机都会同步创建一个栈帧(Stack Frame)用于存储局部变量表、操作数栈、动态连接、方法出口等信息。每一个方法被调用直至执行完毕的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。 “栈”通常就是指这里讲的虚拟机栈,或者更多的情况下只是指虚拟机栈中局部变量表部分。
局部变量表存放了编译期可知的各种Java虚拟机基本数据类型(boolean、byte、char、short、int、float、long、double)、对象引用(reference类型,它并不等同于对象本身,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或者其他与此对象相关的位置)和returnAddress类型(指向了一条字节码指令的地址)。
本地方法栈(Native Method Stacks)与虚拟机栈所发挥的作用是非常相似的,其区别只是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的本地(Native)方法服务。
Java堆是垃圾收集器管理的内存区域,因此一些资料中它也被称作“GC堆”(GarbageCollected Heap,幸好国内没翻译成“垃圾堆”)。
如果从分配内存的角度看,所有线程共享的Java堆中可以划分出多个线程私有的分配缓冲区(Thread Local Allocation Buffer,TLAB),以提升对象分配时的效率。
方法区(Method Area)与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类型信息、常量、静态变量、即时编译器编译后的代码缓存等数据。
运行时常量池(Runtime Constant Pool)是方法区的一部分。Class文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池表(Constant Pool Table),用于存放编译期生成的各种字面量与符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。
直接内存(Direct Memory)并不是虚拟机运行时数据区的一部分,也不是《Java虚拟机规范》中定义的内存区域。但是这部分内存也被频繁地使用,而且也可能导致OutOfMemoryError异常出现.
无法解决循环依赖
在JDK 1.2版之后,Java对引用的概念进行了扩充,将引用分为强引用(Strongly Re-ference)、软引用(Soft Reference)、弱引用(Weak Reference)和虚引用(PhantomReference)4种,这4种引用强度依次逐渐减弱。
强引用是最传统的“引用”的定义,是指在程序代码之中普遍存在的引用赋值,即类似“Objectobj=new Object()”这种引用关系。无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。
软引用是用来描述一些还有用,但非必须的对象。只被软引用关联着的对象,在系统将要发生内存溢出异常前,会把这些对象列进回收范围之中进行第二次回收,如果这次回收还没有足够的内存,才会抛出内存溢出异常。在JDK 1.2版之后提供了SoftReference类来实现软引用。
弱引用也是用来描述那些非必须对象,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生为止。当垃圾收集器开始工作,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在JDK 1.2版之后提供了WeakReference类来实现弱引用。
虚引用也称为“幽灵引用”或者“幻影引用”,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的只是为了能在这个对象被收集器回收时收到一个系统通知。在JDK1.2版之后提供了PhantomReference类来实现虚引用。
方法区的垃圾收集主要回收两部分内容:废弃的常量和不再使用的类型。
在大量使用反射、动态代理、CGLib等字节码框架,动态生成JSP以及OSGi这类频繁自定义类加载器的场景中,通常都需要Java虚拟机具备类型卸载的能力,以保证不会对方法区造成过大的内存压力。
1)弱分代假说(Weak Generational Hypothesis):绝大多数对象都是朝生夕灭的。 2)强分代假说(Strong Generational Hypothesis):熬过越多次垃圾收集过程的对象就越难以消亡。 3)跨代引用假说(Intergenerational Reference Hypothesis):跨代引用相对于同代引用来说仅占极少数。
HotSpot虚拟机里面关注吞吐量的Parallel Scavenge收集器是基于标记-整理算法的,而关注延迟的CMS收集器则是基于标记-清除算法.
还有一种“和稀泥式”解决方案可以不在内存分配和访问上增加太大额外负担,做法是让虚拟机平时多数时间都采用标记-清除算法,暂时容忍内存碎片的存在,直到内存空间的碎片化程度已经大到影响对象分配时,再采用标记-整理算法收集一次,以获得规整的内存空间。前面提到的基于标记-清除算法的CMS收集器面临空间碎片过多时采用的就是这种处理办法。
衡量垃圾收集器的三项最重要的指标是:内存占用(Footprint)、吞吐量(Throughput)和延迟(Latency),三者共同构成了一个“不可能三角”。 三者总体的表现会随技术进步而越来越好,但是要在这三个方面同时具有卓越表现的“完美”收集器是极其困难甚至是不可能的,一款优秀的收集器通常最多可以同时达成其中的两项。
一个类型从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期将会经历加载(Loading)、验证(Verification)、准备(Preparation)、解析(Resolution)、初始化(Initialization)、使用(Using)和卸载(Unloading)七个阶段,其中验证、准备、解析三个部分统称为连接(Linking)。
在加载阶段,Java虚拟机需要完成以下三件事情:
1)通过一个类的全限定名来获取定义此类的二进制字节流。
2)将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。
3)在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口。
验证是连接阶段的第一步,这一阶段的目的是确保Class文件的字节流中包含的信息符合《Java虚拟机规范》的全部约束要求,保证这些信息被当作代码运行后不会危害虚拟机自身的安全。
准备阶段是正式为类中定义的变量(即静态变量,被static修饰的变量)分配内存并设置类变量初始值的阶段.
关于准备阶段,还有两个容易产生混淆的概念笔者需要着重强调,首先是这时候进行内存分配的仅包括类变量,而不包括实例变量,实例变量将会在对象实例化时随着对象一起分配在Java堆中。其次是这里所说的初始值“通常情况”下是数据类型的零值,假设一个类变量的定义为:
public static int a = 123;
那变量value在准备阶段过后的初始值为0而不是123,因为这时尚未开始执行任何Java方法
解析阶段是Java虚拟机将常量池内的符号引用替换为直接引用的过程
·符号引用(Symbolic References):符号引用以一组符号来描述所引用的目标,符号可以是任何形式的字面量,只要使用时能无歧义地定位到目标即可。符号引用与虚拟机实现的内存布局无关,引用的目标并不一定是已经加载到虚拟机内存当中的内容。各种虚拟机实现的内存布局可以各不相同,但是它们能接受的符号引用必须都是一致的,因为符号引用的字面量形式明确定义在《Java虚拟机规范》的Class文件格式中。
·直接引用(Direct References):直接引用是可以直接指向目标的指针、相对偏移量或者是一个能间接定位到目标的句柄。直接引用是和虚拟机实现的内存布局直接相关的,同一个符号引用在不同虚拟机实例上翻译出来的直接引用一般不会相同。如果有了直接引用,那引用的目标必定已经在虚拟机的内存中存在。
进行准备阶段时,变量已经赋过一次系统要求的初始零值,而在初始化阶段,则会根据程序员通过程序编码制定的主观计划去初始化类变量和其他资源。
我们也可以从另外一种更直接的形式来表达:初始化阶段就是执行类构造器()方法的过程。()并不是程序员在Java代码中直接编写的方法,它是Javac编译器的自动生成物,但我们非常有必要了解这个方法具体是如何产生的,以及()方法执行过程中各种可能会影响程序运行行为的细节,这部分比起其他类加载过程更贴近于普通的程序开发人员的实际工作。
比较两个类是否“相等”,只有在这两个类是由同一个类加载器加载的前提下才有意义,否则,即使这两个类来源于同一个Class文件,被同一个Java虚拟机加载,只要加载它们的类加载器不同,那这两个类就必定不相等。
启动类加载器(Bootstrap Class Loader)
扩展类加载器(Extension Class Loader)
应用程序类加载器(Application Class Loader)
双亲委派模型的工作过程是:如果一个类加载器收到了类加载的请求,它首先不会自己去尝试加载这个类,而是把这个请求委派给父类加载器去完成,每一个层次的类加载器都是如此,因此所有的加载请求最终都应该传送到最顶层的启动类加载器中,只有当父加载器反馈自己无法完成这个加载请求(它的搜索范围中没有找到所需的类)时,子加载器才会尝试自己去完成加载
volatile变量只能保证可见性
使用volatile变量的第二个语义是禁止指令重排序优化
重入锁(ReentrantLock)是Lock接口最常见的一种实现,顾名思义,它与synchronized一样是可重入[插图]的。在基本用法上,ReentrantLock也与synchronized很相似,只是代码写法上稍有区别而已。不过,ReentrantLock与synchronized相比增加了一些高级功能,主要有以下三项:等待可中断、可实现公平锁及锁可以绑定多个条件。
如果一个变量V初次读取的时候是A值,并且在准备赋值的时候检查到它仍然为A值,那就能说明它的值没有被其他线程改变过了吗?这是不能的,因为如果在这段期间它的值曾经被改成B,后来又被改回为A,那CAS操作就会误认为它从来没有被改变过。这个漏洞称为CAS操作的“ABA问题”。J.U.C包为了解决这个问题,提供了一个带有标记的原子引用类AtomicStampedReference,它可以通过控制变量值的版本来保证CAS的正确性。不过目前来说这个类处于相当鸡肋的位置,大部分情况下ABA问题不会影响程序并发的正确性,如果需要解决ABA问题,改用传统的互斥同步可能会比原子类更为高效。
高效并发是从JDK 5升级到JDK 6后一项重要的改进项,HotSpot虚拟机开发团队在这个版本上花费了大量的资源去实现各种锁优化技术,如适应性自旋(Adaptive Spinning)、锁消除(Lock Elimination)、锁膨胀(Lock Coarsening)、轻量级锁(Lightweight Locking)、偏向锁(Biased Locking)等,这些技术都是为了在线程之间更高效地共享数据及解决竞争问题,从而提高程序的执行效率。
前面我们讨论互斥同步的时候,提到了互斥同步对性能最大的影响是阻塞的实现,挂起线程和恢复线程的操作都需要转入内核态中完成,这些操作给Java虚拟机的并发性能带来了很大的压力。同时,虚拟机的开发团队也注意到在许多应用上,共享数据的锁定状态只会持续很短的一段时间,为了这段时间去挂起和恢复线程并不值得。现在绝大多数的个人电脑和服务器都是多路(核)处理器系统,如果物理机器有一个以上的处理器或者处理器核心,能让两个或以上的线程同时并行执行,我们就可以让后面请求锁的那个线程“稍等一会”,但不放弃处理器的执行时间,看看持有锁的线程是否很快就会释放锁。为了让线程等待,我们只须让线程执行一个忙循环(自旋),这项技术就是所谓的自旋锁。
不过无论是默认值还是用户指定的自旋次数,对整个Java虚拟机中所有的锁来说都是相同的。在JDK 6中对自旋锁的优化,引入了自适应的自旋。自适应意味着自旋的时间不再是固定的了,而是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定的。
锁消除是指虚拟机即时编译器在运行时,对一些代码要求同步,但是对被检测到不可能存在共享数据竞争的锁进行消除。
如果虚拟机探测到有这样一串零碎的操作都对同一个对象加锁,将会把加锁同步的范围扩展(粗化)到整个操作序列的外部.
轻量级锁能提升程序同步性能的依据是“对于绝大部分的锁,在整个同步周期内都是不存在竞争的”这一经验法则。如果没有竞争,轻量级锁便通过CAS操作成功避免了使用互斥量的开销;但如果确实存在锁竞争,除了互斥量的本身开销外,还额外发生了CAS操作的开销。因此在有竞争的情况下,轻量级锁反而会比传统的重量级锁更慢。
偏向锁也是JDK 6中引入的一项锁优化措施,它的目的是消除数据在无竞争情况下的同步原语,进一步提高程序的运行性能。如果说轻量级锁是在无竞争的情况下使用CAS操作去消除同步使用的互斥量,那偏向锁就是在无竞争的情况下把整个同步都消除掉,连CAS操作都不去做了。
偏向锁中的“偏”,就是偏心的“偏”、偏袒的“偏”。它的意思是这个锁会偏向于第一个获得它的线程,如果在接下来的执行过程中,该锁一直没有被其他的线程获取,则持有偏向锁的线程将永远不需要再进行同步。
一旦出现另外一个线程去尝试获取这个锁的情况,偏向模式就马上宣告结束。根据锁对象目前是否处于被锁定的状态决定是否撤销偏向(偏向模式设置为“0”),撤销后标志位恢复到未锁定(标志位为“01”)或轻量级锁定(标志位为“00”)的状态,后续的同步操作就按照上面介绍的轻量级锁那样去执行。