2019:5:10
M今天在给SD的同学们上程序算法课的时候出了一道找规律的题目,题目表述如下
假设:
S1=a
S2=ab
S3=abc
……
S26=abcd…xyz
S27=abcd…xyza
…….
现在M要求上课的同学们把所有的串依次连接起来,于是得到:
S=aababcabcd……
那么你能告诉M在S串中的第N个字母是多少吗?
输入首先是一个数字K,代表有K次询问(1<= K <= 1000)
接下来的K行每行有一个整数N(1<= N <= 10000)
对于每次询问,输出S串中第N个位置对应的字母。
6
1
2
3
4
5
10
a
a
b
a
b
d
#include
#include
using namespace std;
char arr[26];
//初始化
void init(){
for(int i=97;i<=123;i++){
arr[i-97] = i;
}
}
string str="";
void inits(){
for(int i=0;i<200;i++){
for(int j=0;j<=i;j++){
str = str + arr[j%26];
}
}
}
int main(){
init();
inits();
int n;
cin >> n;
while(n--){
int k,l,j,i;
cin>>k;
cout<
You are given a positive integer n.
Let S(x) be sum of digits in base 10 representation of x, for example, S(123) = 1 + 2 + 3 = 6, S(0) = 0. Your task is to find two integers a, b, such that (0 <= a, b <=n, a + b = n) and S(a) + S(b) is the largest possible among all such pairs.
For each test case print largest S(a) + S(b) among all pairs of integers a, b.
2
35
1000000000
17
82
说明
In the first example, you can choose, for example, a = 17 and b = 18, so that S(17) + S(18) = 1 + 7 + 1 + 8 = 17. It can be shown that it is impossible to get a larger answer.
In the second test example, you can choose, for example, a = 500000001 and b = 499999999, with S(500000001) + S(499999999) = 82. It can be shown that it is impossible to get a larger answer
#include
#include
#define ll long long
using namespace std;
ll fun(ll x){
ll p =0;
while(x!=0){
p = p+x%10;
x = x /10;
}
return p;
}
int main(){
int n;
cin>>n;
while(n--){
ll m;
cin>>m;
ll p,q,k,t=0;
p = m/2; //
while(p/10!=0){
t++;
k = p/10;
p = p/10;
}
while(t--){
k = k*10+9;
}
q = m-k;
cout<
M今天发工资,想去买吃的。
M来到一家糖果店,糖果店里摆放着X堆糖,假设第i堆糖的数量为a[i],糖堆之间满足关系 a[i] - a[i - 1] = d(d为常数)
现在给出第一堆糖的数量,第二堆糖的数量。
求M要买的第P堆糖的数量
多组输入,每组数据有两行
第一行为第一堆糖的数量和第二堆糖的数量
第二行为P
输出第P堆糖的数量
1 2
3
2 4
3
3
6
#include
#include
#define ll long long
using namespace std;
int main(){
int n,m,k;
while(cin>>n>>m>>k){
int d = m-n;
ll t=0;
for(int i = 3;i<=k;i++){
t = m + d;
m = t;
}
cout<
哥德巴赫猜想大家都知道一点吧.我们现在不是想证明这个结论,而是想在程序语言内部能够表示的数集中,任意取出一个偶数,来寻找两个素数,使得其和等于该偶数.
做好了这件实事,就能说明这个猜想是成立的.
由于可以有不同的素数对来表示同一个偶数,所以专门要求所寻找的素数对是两个值最相近的.
输入中是一些偶整数M(5 对于每个偶数,输出两个彼此最接近的素数,其和等于该偶数. Your task is to calculate the sum of some integers. Input contains an integer N in the first line, and then N lines follow. Each line starts with a integer M, and then M integers follow in the same line. For each group of input integers you should output their sum in one line, and you must note that there is a blank line between outputs. Output
Sample Input
20 30 40
Sample Output
7 13
13 17
17 23
#include
A+B for Input-Output Practice (VIII)
Problem Description
Input
Output
Sample Input
3
4 1 2 3 4
5 1 2 3 4 5
3 1 2 3
Sample Output
10
15
6
#include