莫比乌斯变换总结

莫比乌斯变换

约定

  n = p 1 a 1 p 2 a 2 ⋯ p r a r \ n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}  n=p1a1p2a2prar

  a ∣ b \ a \mid b  ab   a \ a  a整除   b \ b  b

  a ∤ b \ a \nmid b  ab   a \ a  a不整除   b \ b  b

  a k ∥ b \ a^{k} \parallel b  akb   a k ∣ b \ a^{k} \mid b  akb   a k + 1 ∤ b \ a^{k+1} \nmid b  ak+1b

  ( a , b ) \ (a,b)  (a,b)最大公约数

  [ a , b ] \ [a,b]  [a,b]最小公倍数

定义

我们设数论函数   f ( n ) \ f(n)  f(n),我们考虑一种运算:

F ( n ) = ∑ d ∣ n f ( d )           ( 1 ) F(n)= \sum_{d \mid n} f(d)\,\,\,\,\,\,\,\,\, (1) F(n)=dnf(d)(1)

我们看到过很多这样关系:

  f ( n ) \ f(n)  f(n)   F ( n ) \ F(n)  F(n)
  1 \ 1  1   τ ( n ) \ \tau(n)  τ(n)
  n \ n  n   σ ( n ) \ \sigma(n)  σ(n)
  φ ( n ) \ \varphi(n)  φ(n)   n \ n  n
  μ ( n ) \ \mu(n)  μ(n)   [ 1 n ] \ \left[ \frac{1}{n} \right]  [n1]
  μ ( n ) n \ \frac{ \mu(n)}{n}  nμ(n)   φ ( n ) n \ \frac{ \varphi(n)}{n}  nφ(n)
  λ ( n ) \ \lambda(n)  λ(n)   ln ⁡ n \ \ln n  lnn
  h ( n ) \ h(n)  h(n)   N ( n ) 4 \ \frac{N(n)}{4}  4N(n)

证明略。

我们称   F ( n ) \ F(n)  F(n)   f ( n ) \ f(n)  f(n)的莫比乌斯变换。

定理

定理1

F ( n ) = { 1 ,                                                                                  n = 1 ∑ e 1 = 0 a 1 ∑ e 2 = 0 a 2 ⋯ ∑ e r = 0 a r f ( p 1 e 1 p 2 e 2 ⋯ p r e r ) ,     n > 1 F(n)= \begin{cases} 1,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n=1 \\ \displaystyle \sum_{e_{1}=0}^{a_{1}} \sum_{e_{2}=0}^{a_{2}} \cdots \sum_{e_{r}=0}^{a_{r}} f(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}), \,\,\,n>1 \end{cases} F(n)=1,n=1e1=0a1e2=0a2er=0arf(p1e1p2e2prer),n>1

  f ( n ) \ f(n)  f(n)积性,   F ( n ) \ F(n)  F(n)积性:

F ( n ) = ∏ j = 1 r ( 1 + f ( p j ) + f ( p j 2 ) + ⋯ f ( p j a r ) )              = ∏ p a ∥ n ( 1 + f ( p ) + f ( p 2 ) + ⋯ f ( p a ) )   ( 2 ) F(n)= \prod_{j=1}^{r}(1+f(p_{j})+f(p_{j}^{2})+ \cdots f(p_{j}^{a_{r}})) \\ \,\,\,\,\,\,\,\,\,\,\,\,= \prod_{p^{a} \parallel n}(1+f(p)+f(p^{2})+ \cdots f(p^{a}))\, \\ (2) F(n)=j=1r(1+f(pj)+f(pj2)+f(pjar))=pan(1+f(p)+f(p2)+f(pa))(2)

  f ( n ) \ f(n)  f(n)完全积性,   F ( n ) \ F(n)  F(n)完全积性:

F ( n ) = ∏ j = 1 r ( 1 + f ( p j ) + f 2 ( p j ) + ⋯ f a j ( p j ) )           = ∏ p a ∥ n ( 1 + f ( p ) + f 2 ( p ) + ⋯ f a ( p ) )      ( 4 ) F(n)= \prod_{j=1}^{r}(1+f(p_{j})+f^{2}(p_{j})+ \cdots f^{a_{j}}(p_{j})) \\ \,\,\,\,\,\,\,\,\,=\prod_{p^{a} \parallel n}(1+f(p)+f^{2}(p)+ \cdots f^{a}(p))\,\,\,\, \\ (4) F(n)=j=1r(1+f(pj)+f2(pj)+faj(pj))=pan(1+f(p)+f2(p)+fa(p))(4)

证明
  F ( 1 ) = f ( 1 ) \ F(1)=f(1)  F(1)=f(1)的证明是显然的。

F ( n ) = ∑ e 1 = 0 a 1 ∑ e 2 = 0 a 2 ⋯ ∑ e r = 0 a r f ( p 1 e 1 p 2 e 2 ⋯ p r e r )                                     = { ∑ e 1 = 0 a 1 f ( p 1 e 1 ) } { ∑ e 2 a 2 f p 2 e 2 } ⋯ { ∑ e r = 0 a r f ( p r e r ) } F(n)=\sum_{e_{1}=0}^{a_{1}} \sum_{e_{2}=0}^{a_{2}} \cdots \sum_{e_{r}=0}^{a_{r}} f(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}})\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\ \\ \,\,\,\,\,\,= \{ \sum_{e_{1}=0}^{a_{1}}f(p_{1}^{e_{1}}) \} \{ \sum_{e_{2}}^{a_{2}}f_{p_{2}^{e_{2}}} \} \cdots \{ \sum_{e_{r}=0}^{a_{r}}f(p_{r}^{e_{r}}) \} F(n)=e1=0a1e2=0a2er=0arf(p1e1p2e2prer) ={ e1=0a1f(p1e1)}{ e2a2fp2e2}{ er=0arf(prer)}

显然由(3)式得:

F ( n ) = F ( p 1 a 1 ) F ( p 2 a 2 ) ⋯ F ( p r a r )           ( 5 ) F(n)=F(p_{1}^{a_{1}}) F(p_{2}^{a_{2}}) \cdots F(p_{r}^{a_{r}})\,\,\,\,\,\,\,\,\,(5) F(n)=F(p1a1)F(p2a2)F(prar)(5)

由此推出其积性。
显然   f ( n ) \ f(n)  f(n)完全积性的时候,显然证明
(4)式。

证毕

引理2

  ( m , n ) = 1 \ (m,n)=1  (m,n)=1   k \ k  k是给定的正整数,那么对于每个   d ∣ m n \ d \mid mn  dmn成立的充要条件是存在唯一的一对正整数   d 1 , d 2 \ d_{1},d_{2}  d1,d2满足   d = d 1 d 2 ,           d 1 k ∣ m ,           d 2 k ∣ n           ( 6 ) \ d=d_{1}d_{2},\,\,\,\,\,\,\,\,\,d_{1}^{k} \mid m,\,\,\,\,\,\,\,\,\, d_{2}^{k} \mid n\,\,\,\,\,\,\,\,\,(6)  d=d1d2,d1km,d2kn(6)

证明:

( m , n ) = 1 ,     d k ∣ m n ⇒ d k = ( d k , m n ) = ( d k , m ) ( d k , n )           ( 7 ) (m,n)=1,\,\,\,d^{k} \mid mn \Rightarrow d^{k}=(d^{k},mn)=(d^{k},m)(d^{k},n)\,\,\,\,\,\,\,\,\,(7) (m,n)=1,dkmndk=(dk,mn)=(dk,m)(dk,n)(7)

显见   ( ( d k , m ) , ( d k , n ) ) = 1 \ ((d^{k},m),(d^{k},n))=1  ((dk,m),(dk,n))=1,所以:

( d k , m ) = ( ( d k , m ) , d ) k = ( d , m ) k           ( 8 ) ( d k , n ) = ( ( d k , n ) , d ) k = ( d , n ) k           ( 9 ) (d^{k},m)=((d^{k},m),d)^{k}=(d,m)^{k}\,\,\,\,\,\,\,\,\,(8) \\ (d^{k},n)=((d^{k},n),d)^{k}=(d,n)^{k}\,\,\,\,\,\,\,\,\,(9) (dk,m)=((dk,m),d)k=(d,m)k(8)(dk,n)=((dk,n),d)k=(d,n)k(9)

  d 1 = ( d , m ) , d 2 = ( d , n ) \ d_{1}=(d,m),d_{2}=(d,n)  d1=(d,m),d2=(d,n),由(6)推出,反过来,若(6)成立,   d k ∣ m n \ d^{k} \mid mn  dkmn是显然的,再由(7)(8)(9)知:

d 1 k d 2 k = ( d k , m ) ( d k , n ) = ( d , m ) k ( d , n ) k d_{1}^{k}d_{2}^{k}=(d^{k},m)(d^{k},n)=(d,m)^{k}(d,n)^{k} d1kd2k=(dk,m)(dk,n)=(d,m)k(d,n)k

我们注意到:

( m , n ) = ( d 1 , n ) = ( d 2 , m ) = 1 (m,n)=(d_{1},n)=(d_{2},m)=1 (m,n)=(d1,n)=(d2,m)=1

所以:

d 1 = ( d , m ) , d 2 = ( d , n ) d_{1}=(d,m),d_{2}=(d,n) d1=(d,m),d2=(d,n)

证毕
        \ \\\,\\\,\\\,  

定理1的另一种证明

我们发现定理1和引理2是独立无关的。

我们设   ( m , n ) = 1 , d 1 , d 2 \ (m,n)=1,d_{1},d_{2}  (m,n)=1,d1,d2
  F ( m n ) = ∑ d ∣ m n f ( d ) = ∑ d 1 ∣ m ∑ d 2 ∣ n f ( d 1 d 2 )         \ F(mn)= \displaystyle \sum_{d \mid mn}f(d)= \sum_{d_{1} \mid m} \sum_{d_{2} \mid n}f(d_{1}d_{2})\,\,\,\,\,\,\,  F(mn)=dmnf(d)=d1md2nf(d1d2)
                       = ∑ d 1 ∣ m f ( d 1 ) ∑ d 2 ∣ m f ( d 2 ) = F ( m ) F ( n )           ( 10 ) \ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,= \displaystyle \sum_{d_{1} \mid m} f(d_{1}) \sum_{d_{2} \mid m} f(d_{2})=F(m)F(n)\,\,\,\,\,\,\,\,\,(10)  =d1mf(d1)d2mf(d2)=F(m)F(n)(10)

推论3

设积性函数   f ( n ) \ f(n)  f(n),我们有:
∑ d ∣ m μ ( d ) f ( d ) = ∏ p ∣ n ( 1 − f ( p ) )           ( 11 ) \sum_{d \mid m} \mu(d)f(d) =\prod_{p\mid n}(1-f(p))\,\,\,\,\,\,\,\,\,(11) dmμ(d)f(d)=pn(1f(p))(11)

∑ d ∣ n μ 2 ( d ) f ( n ) = ∏ p ∣ n ( 1 + f ( p ) )           ( 12 ) \sum_{d \mid n} \mu^{2}(d)f(n)= \prod_{p \mid n}(1+f(p))\,\,\,\,\,\,\,\,\,(12) dnμ2(d)f(n)=pn(1+f(p))(12)

这是容易得到的,就不展示证明了。

  f ( n ) = 1 n \ f(n)= \frac{1}{n}  f(n)=n1,得

∑ d ∣ n μ ( d ) d = ∏ p ∣ n ( 1 − 1 p ) = φ ( n ) n           ( 13 ) \sum_{d \mid n} \frac{\mu (d)}{d}=\prod_{p \mid n}(1- \frac{1}{p})=\frac{\varphi(n)}{n}\,\,\,\,\,\,\,\,\,(13) dndμ(d)=pn(1p1)=nφ(n)(13)

我们也能想到莫比乌斯反演不是对整数成立的。所以我们可以用此优化很多算法包括优化精度。

特别的,取   f ( n ) = 1 \ f(n)=1  f(n)=1.

∑ d ∣ n μ ( d ) = { 1 ,     n = 1 0 ,     n > 1 ( 14 ) \sum_{d \mid n} \mu(d)= \begin{cases} 1,\,\,\,n=1 \\ 0,\,\,\,n>1 \end{cases} \\ (14) dnμ(d)={ 1,n=10,n>1(14)

定理4

设函数   f ( n ) , F ( n ) \ f(n),F(n)  f(n),F(n),若要使(1)式成立,充要条件3为:

f ( n ) = ∑ d ∣ n μ ( d ) F ( n d )        ( 15 ) f(n)= \sum_{d \mid n} \mu(d)F(\frac{n}{d})\,\,\,\,\,\,(15) f(n)=dnμ(d)F(dn)(15)
充分性证明:

∑ d ∣ n f ( d ) = ∑ d ∣ n { ∑ k ∣ d μ ( k ) F ( d k ) } = ∑ k ∣ d μ ( k ) ∑ k ∣ d , d ∣ n F ( d k ) \sum_{d \mid n}f(d)=\sum_{d \mid n} \{ \sum_{k \mid d} \mu(k)F(\frac{d}{k}) \}= \sum_{k\mid d}\mu(k) \sum_{k \mid d,d \mid n} F(\frac{d}{k}) dnf(d)=dn{ kdμ(k)F(kd)}=kdμ(k)kd,dnF(kd)

  d = k l \ d=kl  d=kl,得:
∑ d ∣ n f ( d ) = ∑ k ∣ n μ ( k ) ∑ l ∣ n k F ( l ) = ∑ l ∣ n F ( l ) ∑ k ∣ n l μ ( k ) = F ( n ) \sum_{d \mid n}f(d)=\sum_{k \mid n} \mu(k) \sum_{l \mid \frac{n}{k}}F(l)= \sum_{l \mid n}F(l) \sum_{k \mid \frac{n}{l}} \mu(k)=F(n) dnf(d)=knμ(k)lknF(l)=lnF(l)klnμ(k)=F(n)
证毕

必要性有多种方法:

直接带入(15)于(1)
∑ d ∣ n μ ( d ) F ( n d ) = ∑ d ∣ n μ ( d ) ∑ l ∣ n d f ( l ) = ∑ l ∣ n f ( l ) ∑ d ∣ n l μ ( d ) = f ( n ) \sum_{d \mid n} \mu (d)F( \frac{n}{d})=\sum_{d \mid n} \mu(d) \sum_{l \mid \frac{n}{d}}f(l)= \sum_{l \mid n}f(l)\sum_{d \mid \frac{n}{l}} \mu(d)=f(n) dnμ(d)F(dn)=dnμ(d)ldnf(l)=lnf(l)dlnμ(d)=f(n)

证毕

但我们不能看出为什么有(15)这个式子。所以我们要利用(14)来理解:

f ( n ) = ∑ k ∣ n f ( n k ) ∑ d ∣ k μ ( d ) = ∑ d ∣ n μ ( d ) ∑ d ∣ k , k ∣ n f ( n k ) f(n)= \sum_{k \mid n}f(\frac{n}{k}) \sum_{d \mid k} \mu(d) = \sum_{d \mid n} \mu(d) \sum_{d \mid k,k \mid n}f(\frac{n}{k}) f(n)=knf(kn)dkμ(d)=dnμ(d)dk,knf(kn)

  k = d l \ k=dl  k=dl,得:

f ( n ) = ∑ d ∣ n μ ( d ) ∑ l ∣ n d f ( n d l ) = ∑ d ∣ n μ ( d ) F ( n d ) f(n)= \sum_{d \mid n}\mu(d) \sum_{l \mid \frac{n}{d}} f(\frac{n}{dl})=\sum_{d \mid n}\mu(d)F(\frac{n}{d}) f(n)=dnμ(d)ldnf(dln)=dnμ(d)F(dn)

证毕

以上为莫比乌斯翻转公式

定理5

设数论函数   f ( n ) , g ( n ) , h ( n ) \ f(n),g(n),h(n)  f(n),g(n),h(n)
h ( n ) = ∑ d ∣ n f ( n ) g ( n d )           ( 16 ) h(n)=\sum_{d \mid n}f(n)g(\frac{n}{d})\,\,\,\,\,\,\,\,\,(16) h(n)=dnf(n)g(dn)(16)

  f ( n ) , g ( n ) \ f(n),g(n)  f(n),g(n)积性时,   h ( n ) \ h(n)  h(n)积性。

证明

f ( 1 ) = g ( 1 ) = 1 ⇒ h ( 1 ) = 1 f(1)=g(1)=1 \Rightarrow h(1)=1 f(1)=g(1)=1h(1)=1

  ( m , n ) = 1 \ (m,n)=1  (m,n)=1,利用引理2

h ( m n ) = ∑ d ∣ m n f ( d ) g ( m n d ) = ∑ d 1 ∣ m , d 2 ∣ n f ( d 1 d 2 ) g ( m n d 1 d 2 ) = h ( m ) h ( n ) h(mn)=\sum_{d \mid mn}f(d)g(\frac{mn}{d})=\sum_{d_{1} \mid m,d_{2} \mid n}f(d_{1}d_{2})g(\frac{mn}{d_{1}d_{2}})=h(m)h(n) h(mn)=dmnf(d)g(dmn)=d1m,d2nf(d1d2)g(d1d2mn)=h(m)h(n)

证毕

推论6

  f ( n ) \ f(n)  f(n)积性的充要条件是   F ( n ) \ F(n)  F(n)积性。

证明:

我们显然得知:

f ( p a ) = F ( p a ) − F ( p a − 1 ) f(p^{a})=F(p^{a})-F(p^{a-1}) f(pa)=F(pa)F(pa1)

几乎瞬间证毕

应用例子

ex1

  F ( n ) = n t \ F(n)=n^{t}  F(n)=nt   f ( n ) \ f(n)  f(n)

  F ( n ) \ F(n)  F(n)积性,所以有:

f ( p a ) = p a t − p ( a − 1 ) t = p a t ( a − p − t ) f(p^{a})=p^{at}-p^{(a-1)t}=p^{at}(a-p^{-t}) f(pa)=patp(a1)t=pat(apt)

所以有

f ( n ) = n t ∏ p ∣ n ( 1 − p − t ) f(n)=n^{t} \prod_{p \mid n}(1-p^{-t}) f(n)=ntpn(1pt)

ex2

  F ( n ) = φ ( n ) \ F(n)= \varphi(n)  F(n)=φ(n),求   f ( n ) \ f(n)  f(n)

  F ( n ) \ F(n)  F(n)积性,所以有:

f ( p a ) = φ ( p a ) − φ ( p a − 1 ) = { p ( 1 − 2 p ) ,          a = 1 p a ( 1 − 1 p ) 2 ,     a > 1 f(p^{a})=\varphi(p^{a})-\varphi(p^{a-1})= \begin{cases} p(1-\frac{2}{p}), \,\,\,\,\,\,\,\,a=1 \\ p^{a}(1-\frac{1}{p})^{2}, \,\,\,a>1 \end{cases} f(pa)=φ(pa)φ(pa1)={ p(1p2),a=1pa(1p1)2,a>1

ex3

  f ( n ) = μ 2 ( n ) φ ( n ) \ f(n)=\frac{\mu^{2}(n)}{\varphi(n)}  f(n)=φ(n)μ2(n),求   F ( n ) \ F(n)  F(n)

∑ d ∣ p a μ 2 ( d ) φ ( d ) = 1 + 1 p − 1 = ( 1 − 1 p ) − 1 \sum_{d \mid p^{a}}\frac{\mu^{2}(d)}{\varphi(d)}=1+\frac{1}{p-1}=(1-\frac{1}{p})^{-1} dpaφ(d)μ2(d)=1+p11=(1p1)1

所以得:

∑ d ∣ n μ 2 ( d ) φ ( d ) = ∏ p ∣ n ( 1 − 1 p ) − 1 = n φ ( n ) \sum_{d \mid n} \frac{\mu^{2}(d)}{\varphi(d)}=\prod_{p \mid n}(1- \frac{1}{p})^{-1}=\frac{n}{\varphi(n)} dnφ(d)μ2(d)=pn(1p1)1=φ(n)n

ex5


f ( n , m ) = ∑ i n ∑ j m [ ( i , j ) = 1 ] f(n,m)=\sum_{i}^{n} \sum_{j}^{m}[(i,j)=1] f(n,m)=injm[(i,j)=1]

证明

        f ( n , m ) = ∑ i n ∑ j m ∑ d ∣ ( i , j ) μ ( d ) = ∑ d μ ( d ) ∑ d ∣ i ∑ d ∣ j 1 = ∑ d μ ( d ) [ n d ] [ m d ] \begin{array}{crl} & &\,\,\,\,\,\,\,f(n,m) \\ & &=\sum_{i}^{n}\sum_{j}^{m}\sum_{d \mid (i,j)} \mu(d) \\ & &=\sum_{d} \mu(d) \sum_{d \mid i} \sum_{d \mid j} 1 \\ & &=\sum_{d} \mu(d) \left[ \frac{n}{d}\right] \left[ \frac{m}{d}\right] \end{array} f(n,m)=injmd(i,j)μ(d)=dμ(d)didj1=dμ(d)[dn][dm]

ex5.5


f ( n , m ) = ∑ i n ∑ j m ( i , j ) f(n,m)=\sum_{i}^{n} \sum_{j}^{m}(i,j) f(n,m)=injm(i,j)

证明

        f ( n , m ) = ∑ i n ∑ j m ∑ d ∣ ( i , j ) φ ( d ) = ∑ d φ ( d ) ∑ d ∣ i ∑ d ∣ j 1 = ∑ d φ ( d ) [ n d ] [ m d ] \begin{array}{crl} & &\,\,\,\,\,\,\,f(n,m) \\ & &=\sum_{i}^{n}\sum_{j}^{m}\sum_{d \mid (i,j)} \varphi(d) \\ & &=\sum_{d} \varphi(d) \sum_{d \mid i} \sum_{d \mid j} 1 \\ & &=\sum_{d} \varphi(d) \left[ \frac{n}{d}\right] \left[ \frac{m}{d}\right] \end{array} f(n,m)=injmd(i,j)φ(d)=dφ(d)didj1=dφ(d)[dn][dm]

eeeexxxx5555

设整系数多项式   P ( n ) \ P(n)  P(n)   S ( n ; P ( x ) ) \ S(n;P(x))  S(n;P(x))为满足   ( P ( d ) , n ) = 1 ,     1 ≤ d ≤ n \ (P(d),n)=1,\,\,\,1 \le d \le n  (P(d),n)=1,1dn的个数。

试证明   S ( n ) = S ( n ; P ( x ) ) \ S(n)=S(n;P(x))  S(n)=S(n;P(x))积性。

利用式(14)

S ( n ) = ∑ d = 1 , ( P ( d ) , n ) = 1 n 1 = ∑ d = 1 n ∑ k ∣ ( P ( d ) , n ) μ ( k ) = ∑ k ∣ n μ ( k ) ∑ d = 1 , k ∣ P ( d ) n 1 S(n)= \sum_{d=1,(P(d),n)=1}^{n}1=\sum_{d=1}^{n}\sum_{k \mid (P(d),n)}\mu(k)= \sum_{k \mid n} \mu(k) \sum_{d=1,k \mid P(d)}^{n}1 S(n)=d=1,(P(d),n)=1n1=d=1nk(P(d),n)μ(k)=knμ(k)d=1,kP(d)n1

  T ( k ) = T ( k ; P ( x ) ) \ T(k)=T(k;P(x))  T(k)=T(k;P(x))表示以下同余方程的解数:

P ( x ) ≡ 0 ( m o d k ) P(x) \equiv 0 \pmod{k} P(x)0(modk)

  k ∣ n \ k \mid n  kn时,有:

∑ d = 1 , k ∣ P ( d ) n = n k T ( k ) \sum_{d=1,k \mid P(d)}^{n}=\frac{n}{k}T(k) d=1,kP(d)n=knT(k)
所以

S ( n ) = n ∑ k ∣ n μ ( k ) T ( k ) k S(n)=n \sum_{k \mid n}\frac{ \mu(k)T(k)}{k} S(n)=nknkμ(k)T(k)

显然是积性的。

其他

h ( n ) = ∑ d ∣ n f ( d ) g ( n d ) h(n)= \sum_{d \mid n}f(d)g(\frac{n}{d}) h(n)=dnf(d)g(dn)

也写作:

h = f ∗ g h=f*g h=fg

我们称   h \ h  h   f \ f  f   g \ g  g狄利克雷卷积,为一种重要卷积形式。

你可能感兴趣的:(数学,总结,数论,莫比乌斯变换)