- 农村只要闲人多,这个加工厂就可以干,一年能挣二十几万!
氧惠爱高省
目前社会上的加工厂,人工成本第一位,为什么现在有很多城市里的小微企业倒闭多呢?有很多就是人工成本、房租成本等无法承受。相比较在农村,人力资源就更丰富一些,空闲房子也多,所以说,当下有许多加工项目,也只能是向农村转移,不然就很难活下去。氧惠APP是与以往完全不同的抖客+淘客app!2024全新模式,我的直推也会放到你下面。主打:带货高补贴,深受各位带货团队长喜爱(训练营导师每天出单带货几万单)。注册
- 【第921篇】新学期的说写课程要开始啦
杜香开花2008
2021年12月的时候,带领五年级的孩子进行了55天的说写,后来五年级的很多孩子都有了自己的说写文集,这也是她们人生的第一本文集。孩子们很兴奋,很有成就感,觉得这是他一个学期最大的收获。2022年春季开学,我不在带五年级那个班了,又接手了一个新的班级——三年级七班。因为对说写的情缘,觉得说写不仅锻炼孩子的写作能力,同时,还能够训练孩子的思维,最后,让孩子达到出口成章。我决定这学期要带着三年级的孩子
- 基于SVm和随机森林算法模型的中国黄金价格预测分析与研究
python编程狮
支持向量机算法随机森林python机器学习人工智能
摘要本研究基于回归模型,运用支持向量机(SVM)、决策树和随机森林算法,对中国黄金价格进行预测分析。通过历史黄金价格数据的分析和特征工程,建立了相应的预测模型,并利用SVM、决策树和随机森林算法进行训练和预测。首先,通过对黄金价格时间序列数据的探索性分析,发现黄金价格存在一定的趋势和季节性变化。随后,进行了数据预处理和特征选择,为建立准确的预测模型奠定了基础。分别使用SVM、决策树和随机森林算法建
- 2023-04-21
感恩学习相信小陶
感恩!六点签到舒适区的消解无时不在、无处不在,不仅生理上如此,技能和认知上也是如此。《刻意练习》的研究者指出,训练引起的认知和生理变化要想持续,就不能停止训练,一旦停止训练,它们便开始消失。也就是说,我们通过辛辛苦苦的训练培养的绘画、演奏、写作等技能一旦荒废,就会退化。因为大脑中相关脑区的神经不再受到刺激,神经关联就会减弱,原先建立的连接也可能慢慢断开。所以这个世界上没有能够长期逗留的舒适区,贪恋
- Python训练 + Go优化 + C#部署:端到端AI模型的跨语言实践
威哥说编程
人工智能学习资料库pythongolangc#
在现代AI应用中,如何高效地训练、优化、并最终部署AI模型是一项复杂且具有挑战性的任务。在这一过程中,选择合适的编程语言和工具可以显著提高效率和系统的性能。Python作为AI领域的主流语言,具有丰富的深度学习框架(如PyTorch和TensorFlow),在模型训练方面处于领先地位。然而,针对计算密集型任务(如数据预处理、加密等),Go语言因其高效的并发处理和出色的性能,成为优化计算的理想选择。
- YOLO目标检测模型优化技术全景解析
YOLO目标检测模型优化技术全景解析作为实时目标检测领域的标杆算法,YOLO系列模型通过持续的技术革新不断提升性能边界。本文将从模型架构设计、数据优化、注意力机制融合、后处理策略及训练方法等维度,系统剖析YOLO优化领域的关键技术与最新进展。一、模型架构优化:突破性能瓶颈的核心路径多尺度检测层增强针对小目标检测难题,主流方案通过增加浅层检测通道优化特征提取。例如在YOLOv5中引入160×160特
- DL00478-涡轮叶片缺陷检测数据集yolo格式1300张左右
涡轮叶片缺陷检测数据集yolo格式1300张左右涡轮叶片缺陷检测数据集YOLO格式解析:提升研究与论文写作的关键要点在研究涡轮叶片缺陷检测的过程中,数据集的选择和格式处理是一个至关重要的环节。特别是当你打算通过卷积神经网络(CNN)等深度学习模型进行缺陷检测时,数据集的标注和格式化直接影响到模型的训练效果和论文的质量。本文将重点探讨涡轮叶片缺陷检测数据集的YOLO格式,并分析如何利用这一格式为研究
- YOLO 目标检测的改进方法
YOLO目标检测的改进方法可以从模型架构、训练策略、损失函数等多个方面入手,以下是一些常见的改进方法方向及参考文献:模型架构改进骨干网络替换:使用更轻量或更强大的网络替换原始骨干网络。轻量级网络如MobileNetV3、ShuffleNetV2等适合移动端部署,可提高推理速度;高性能网络如ConvNeXt、SwinTransformer等能提取更丰富的语义特征,提升检测精度。还可添加CBAM、SE
- HTTP性能优化终极指南:从协议原理到企业级实践
前言:为什么性能优化是Web开发的生命线?根据Google研究数据,当页面加载时间从1秒增加到3秒时,跳出率提升32%;当达到5秒时,转化率下降90%。本文将通过七层优化体系,带您掌握HTTP性能优化的核心技术,包含:8大核心优化方向12个真实企业案例20+可立即落地的配置代码最新HTTP/3实践方案一、网络层优化:从DNS到HTTP/3的全栈加速1.1智能DNS解析体系//动态预解析用户可能访问
- ArrayList 与 LinkedList 的区别
BonnenuIt゛浅时光737
Java基础java面试
ArrayList与LinkedList的核心区别在Java中,ArrayList和LinkedList是两种常用的列表实现,它们在底层结构、性能特性和适用场景上有显著差异。以下从多个维度详细对比:1.底层数据结构对比项ArrayListLinkedList数据结构动态数组(Object[])双向链表(每个节点包含前驱和后继指针)存储方式连续内存空间存储元素非连续内存,通过指针关联元素内存占用需预
- 分类模型(BERT)训练全流程
巴伦是只猫
人工智能分类bert数据挖掘
使用BERT实现分类模型的完整训练流程BERT(BidirectionalEncoderRepresentationsfromTransformers)是一种强大的预训练语言模型,在各种NLP任务中表现出色。下面我将详细梳理使用BERT实现文本分类模型的完整训练过程。1.准备工作1.1环境配置pipinstalltransformerstorchtensorflowpandassklearn1.2
- 新活法训练营第七天2022-03-21
Diana_58d9
破解困惑的根源必修:学完这一课,你有哪些收获和心得,写出至少三点。1、通过张老师对动物假死的讲解,知道了所有的疼痛都是潜意识里的一种自我保护,叫创伤胶囊。对于创伤胶囊里的人或动物,给他足够的时间让他自己恢复是最好的。2、困惑也是启动了心理保护机制,是一种自我保护,面对困惑,首先接纳他,允许他在,第二,慢慢走进它,接受他在我们身上,第三,放下,转身做该做的事。如何突破困惑,首先有足够的意愿度,才能醒
- 2020-5-7晨间日记
邓芬芳
今天是什么日子起床:五点三十五就寝:十一点之前天气:阴天有雨心情:焦虑纪念日:高品质的生活需要适度的焦虑任务清单昨日完成的任务,最重要的三件事:打扫卫生、听课、准备复学第一课团体训练活动改进:团体训练活动准备的不理想习惯养成:科学、合理安排时间,提高效率,知行合一周目标·完成进度积极主动高效快速完成领导安排的任务学习·信息·阅读继续阅读《自卑与超越》《权宜之计》等书籍继续学习微笑主义——整合心理学
- 收视率怎么赚钱?这篇文章为你揭秘电视剧怎么赚钱的
氧惠全网优惠
现在的人们几乎都是有刷剧的习惯,我们忙完了一天的工作以后都是会看上有些东西,也是成为了我们生活当中必不可少的一个娱乐项目,甚至好多人为了看电视剧可以熬一整个通宵,目的就是看到他们最后的大结局。氧惠APP是与以往完全不同的抖客+淘客app!2024全新模式,我的直推也会放到你下面。主打:带货高补贴,深受各位带货团队长喜爱(训练营导师每天出单带货几万单)。注册即可享受高补贴+0撸+捡漏等带货新体验。古
- PD分离技术分析
老兵发新帖
人工智能
PD分离中的“PD”指的是大语言模型(LLM)推理过程中的两个核心阶段:Prefill(预填充)和Decode(解码)。这两个阶段在计算特性和资源需求上存在显著差异,分离部署可优化整体性能。以下是详细解析:一、PD的具体含义Prefill(预填充阶段)任务:处理用户输入的整个提示(Prompt),为所有Token生成初始的键值缓存(KVCache)和隐藏状态(HiddenStates)。特性:计算
- 大模型微调技术的详细解析及对比
老兵发新帖
人工智能大数据
以下是四种主流大模型微调技术的详细解析及对比,结合技术原理、适用场景与性能表现进行说明:1.Full-tuning(全量微调)核心原理:加载预训练模型的所有参数,用特定任务数据(通常为指令-回答对)继续训练,更新全部权重。相当于对模型整体知识结构进行重构。操作流程:加载预训练模型;用任务数据集(如分类文本)和优化目标(如最小化误差)训练;所有参数参与梯度更新。优势:模型充分学习任务特征,效果通常最
- 大模型训练中的“训练阶段”(如Pre-training、SFT、RLHF等)与“微调技术”
老兵发新帖
人工智能深度学习机器学习
大模型训练中的“训练阶段”(如Pre-training、SFT、RLHF等)与“微调技术”(如Full-tuning、Freeze-tuning、LoRA、QLoRA)是两类不同维度的概念,二者共同构成模型优化的完整流程。以下是二者的关系解析及技术对照:一、训练阶段的核心流程与目标预训练(Pre-training)目标:在无标注通用数据(如互联网文本)上训练模型,学习语言、视觉等通用特征。微调技术
- Epoch
老兵发新帖
人工智能
在深度学习和机器学习中,Epoch(轮次或周期)是一个核心训练概念,指模型在整个训练数据集上完成一次完整遍历的过程。以下是关于Epoch的详细解析:一、核心定义基本含义Epoch表示模型将所有训练数据完整学习一次的过程。例如:若训练集有10,000个样本,则1个Epoch即模型用这10,000个样本训练一轮。与相关概念的关系Batch(批次):数据集被分割成的小组(如每批32个样本)。Iterat
- Python --- day 10 Opencv模块的使用
AnAn__kang
pythonopencv开发语言
系列文章目录前言今天博主带大家进入Opencv的学习,这是一个专门针对处理图像和视频的一个模块,大家以理解为主,增强自己的编程思维,再后续我们训练模型时会大批量的处理图片时会经常用到这个模块。1OpenCV介绍OpenCV(开放源代码计算机视觉库)是一个开源的计算机视觉和机器学习软件库。由一系列C++类和函数构成,用于图像处理、计算机视觉领域的算法实现。1.1OpenCV优势**开源免费:**完全
- 【无标题】迭代器和生成器的区别及其各自实现方式和使用场景
AnAn__kang
python机器学习开发语言
系列文章目录前言小伙伴们,今天我们将进入迭代器和生成器的使用,这俩个呢对我们处理信息的时候帮助是非常大的。对于我们的电脑将减轻负重,不至于内存的损耗过大。未来我们在训练模型处理数据时,会频繁的使用生成器。一,迭代器Iterator迭代器提供了一种惰性(lazyevaluation)获取数据的方法,使得我们能够逐步访问序列中的元素,而无需一次性加载所有数据。其主要优点包括节省内存、提高性能、支持自定
- 快手开源 Kwaipilot-AutoThink 思考模型,有效解决过度思考问题
新闻在专为防止数据泄露设计的挑战性基准测试LiveCodeBenchPro中,Kwaipilot-AutoThink位列所有开源模型榜首,甚至超越了Seed和o3-mini等强大的专有系统。介绍KAT(Kwaipilot-AutoThink)是一个开源大语言模型,通过学习何时生成显式思维链及何时直接作答,有效缓解过度思考问题。它的发展遵循简洁的两阶段训练流程:阶段核心思想关键技术成果1.预训练阶段
- 深度学习图像分类数据集—百种病虫害分类
AI街潜水的八角
深度学习图像数据集深度学习分类人工智能
该数据集为图像分类数据集,适用于ResNet、VGG等卷积神经网络,SENet、CBAM等注意力机制相关算法,VisionTransformer等Transformer相关算法。数据集信息介绍:百种病虫害识别分类,训练集45095张,验证集7508张,测试集22619张具体类别为以下:insect_classes=["rice_leaf_roller","rice_leaf_caterpillar
- 基于深度学习的语音识别:从音频信号到文本转录
Blossom.118
机器学习与人工智能深度学习语音识别音视频人工智能机器学习线性代数计算机视觉
前言语音识别(AutomaticSpeechRecognition,ASR)是人工智能领域中一个极具挑战性和应用前景的研究方向。它通过将语音信号转换为文本,为人们提供了更加自然和便捷的人机交互方式。近年来,深度学习技术在语音识别领域取得了显著进展,极大地提高了语音识别的准确率和鲁棒性。本文将详细介绍如何使用深度学习技术构建一个语音识别系统,从音频信号的预处理到模型的训练与部署。一、语音识别的基本概
- 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶
Ryan_sz1
1、过拟合、欠拟合及其解决方案过拟合、欠拟合机器学习或者训练深度神经网络的时候经常会出现欠拟合和过拟合这两个问题,但是,一开始我们的模型往往是欠拟合的,也正是因为如此才有了优化的空间,我们需要不断的调整算法来使得模型的表达能拿更强。但是优化到了一定程度就需要解决过拟合的问题了。也就是说欠拟合是模型表达能力不够,达不到很好的表达效果。而过拟合是在训练集的范围内表达能力过强,导致完全拟合了训练集。解决
- 告别瘦弱肌,3招有效,让你秒变型男!
硬刻时代
有些肌友们在增肌的过程中,会发现怎么吃怎么练也不见效果,就认为与自身的吸收以及训练强度不够造成的。其实造成肌肉增长不明显,有很多的原因,比如说饮食、训练方法与频率、营养补剂、个人体质,身体的代谢等都有很大的关联!有一些人天生就是瘦弱的体质,怎么练肌肉增长的就是不明显,其实无论是天生的瘦弱的体质还是后期的训练增肌慢,都会给需要增肌的肌友们带来很大的困扰。想要解决这个问题首先就需要从不同类型的增肌人群
- 思维导图学习之二阶:实践力第四节
纯优妈咪
时间:2021.5.29课程:简快导图之《杨柳》,核心心法:关键词和逻辑。课程收获:首先老师讲了拆解的意义,比如我们在给孩子讲解绘本的时候,我们会把它拆解成大类,中类,小类,小小类。那么拆解有什么意义呢?它可以使我们思路更清晰,把复杂的事情经过层层的分层分级,最终明白和理解的一个过程。这节课还是进行收敛型思维的训练,以《杨柳》为例展开。第一步:通读全文;第二步:通文理解(略);第三步:逐句找关键词
- 2024年1月15日学习记录——有关resnet18的简单再实现
BARBERUM
学习深度学习人工智能
2024年1月15日学习记录1.有关resnet18重写并训练的任务resnet本意为resdualnet,就是残差神经网络,利用shortcut的连接方式,将特征层隔层连接,在保留原有特征的同时进行深层卷积。可以有效的解决因神经网络层数的叠加而导致的退化问题。根据以下的逻辑图实现:首先图片作为输入,格式为[3,32,32]经过一个7*7的卷积核和一个最大池化层后进入残差结构层第一级残差结构层为两
- 【7.28早分享】抗挫力强大的孩子背后,都站着一位这样的妈妈
graceLiu_621
在社会飞速发展、精神压力巨大的今天,如何有效提升孩子的抗挫力,是很多家长关注的话题。有些家长觉得,现在孩子物质太丰富,得让孩子多经历挫败,多对孩子吼一吼、喊一喊,让他们知道生活没那么容易,抗挫力就有了;也有家长认为,现在孩子吃苦太少,得多让他们体验一下生活的艰苦才行,一些把孩子送到偏远山村“忆苦思甜”的节目和活动也不在少数;还有一些家长,直接把孩子送到各种军训、体能训练营中,认为通过这种体能和毅力
- Lily的Scalers Talk第八轮新概念朗读持续力训练Day219 2023-07-06
草木Lily
Lesson14-1TheButterflyEffectBeyondtwoorthreedays,theworld'sbestweatherforecastsarespeculative,andbeyondsixorseventheyareworthless.TheButterflyEffectisthereason.Forsmallpiecesofweather--andtoaglobalfor
- 预取内存 和 非预取内存区别
zly8865372
macos
在PCIe(PCIExpress)设备中,预取内存(PrefetchableMemory)和非预取内存(Non-PrefetchableMemory)是两种不同的内存区域类型,主要区别在于它们的访问特性、使用场景以及硬件优化方式。以下是详细对比:1.定义与核心区别特性预取内存(Prefetchable)非预取内存(Non-Prefetchable)数据访问行为允许预读(Prefetch)和缓存,数
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C