Java源代码分析之Vector数组

Vector源码分析

  • 每个Java程序员应该的特性

    • 可变长数组(grow or shrink
    • 能够使用索引获取值(accessed using an integer index
    • 多线程环境下线程安全
  • 类图

Java源代码分析之Vector数组_第1张图片

package java.util;

import java.util.function.Consumer;
import java.util.function.Predicate;
import java.util.function.UnaryOperator;

/*
vector 通过capacity(容量)和capacityIncrement(增量)两个属性来最化管理存储, capacity 一般都比 size 大。 
当知道需要插入大量元素时,可以提前分配给vector较大空间,减少分配内存次数, 从而减少不必要的开销。 
此类的iterator和listIterator方法返回的迭代器是快速失败的:如果该向量在任何时间从结构上修改创建迭代器后,
以任何方式,除了通过迭代器自身的remove或add方法,迭代器都将抛出ConcurrentModificationException。
因此,在并发的修改,迭代器很快就会完全失败,而不是在将来不确定的时间任意冒险,不确定性的行为。
通过elements方法返回的Enumeration不是快速失败的。
注意,迭代器的快速失败行为不能得到保证,因为它是,一般来说,
不可能作出任何硬性保证不同步并发修改的存在。快速失败迭代器抛出ConcurrentModificationException尽最大努力的基础上。
因此,这将是错误的编写一个程序,依赖于此异常为它的正确性:
迭代器的快速失败行为应该仅用于检测bug。
从Java 2平台v1.2,这个类是改进来实现List接口,使它成为Java Collections Framework的成员。
不同的是新的集合实现不同,Vector是同步的。
如果不需要线程安全执行,建议代替矢量的使用的ArrayList。
 */
public class Vector<E>
    extends AbstractList<E>
    implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
    // 存放数据的数组
    protected Object[] elementData;

    // 实际元素个数
    protected int elementCount;

    // 容量增量,每次扩容增加的大小,如果 capacityIncrement小雨或等于0,那么容量会每次翻倍double的增长
    protected int capacityIncrement;

    private static final long serialVersionUID = -2767605614048989439L;
// 数组的初始化,增量的初始化,容量小于0会报异常
    public Vector(int initialCapacity, int capacityIncrement) {
        super();
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        this.elementData = new Object[initialCapacity];
        this.capacityIncrement = capacityIncrement;
    }

    // 指定容量,并且增量为0,每次扩容方法为翻倍
    public Vector(int initialCapacity) {
        this(initialCapacity, 0);
    }

    //默认构造方法,默认容量大小为10
    public Vector() {
        this(10);
    }

    // 根据指定集合创建vector
    // 另外vector的顺序由集合Collection的iterator遍历的顺序来保证
    public Vector(Collection c) {
        elementData = c.toArray();  // 根据集合生成数组,数组是reallocate的,不存在refer关系
        elementCount = elementData.length;
        //下面一句话简单理解就是 toArray()返回的并不一定是Object[]数组(实际类型)
        // 具体请看 我的博客文章 http://blog.csdn.net/huzhigenlaohu/article/details/51702737
        // c.toArray might (incorrectly) not return Object[] (see 6260652)
        if (elementData.getClass() != Object[].class)
            elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
    }

    /**
     * anArray 为空会报空指针异常 , anArray的长度不能容纳elementData所有元素汇会报索引越界异常
     * 另外 c.toArray  not return Object[]时候 报 ArrayStoreException
     * 请看 http://blog.csdn.net/huzhigenlaohu/article/details/51702737
     */
    public synchronized void copyInto(Object[] anArray) {
        System.arraycopy(elementData, 0, anArray, 0, elementCount);
    }

    // 去掉Vector 数组后面未存入数据的部分,使得Capacity(length) = elementCount
    public synchronized void trimToSize() {
        //这个 字段含义为 vector 结构(一般指的是大小)被修改的次数
        modCount++;
        int oldCapacity = elementData.length;
        if (elementCount < oldCapacity) {
            elementData = Arrays.copyOf(elementData, elementCount);
        }
    }
//扩容函数(对外暴露的函数,实现看grow)
    public synchronized void ensureCapacity(int minCapacity) {
        if (minCapacity > 0) {
            modCount++;
            ensureCapacityHelper(minCapacity);
        }
    }


    private void ensureCapacityHelper(int minCapacity) {
        // overflow-conscious code
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }


    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
     //这个才是看的重点,上面两个函数可以忽略掉。。。额,说错了,不是忽略掉而是可以不看
    private void grow(int minCapacity) {
        // overflow-conscious code
        int oldCapacity = elementData.length;
        // 如果增量大于0那么是的容量+Increment,如果小于等于0,那么容量翻倍
        int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
                                         capacityIncrement : oldCapacity);
        // 如果根据扩容方法后容量还是小于minCapacity,那么设置扩容后大小为minCapacity
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        //溢出,大于最大允许的容量
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        //根据容量重新reallocate内存,得到一个新数组
        elementData = Arrays.copyOf(elementData, newCapacity);
    }
// 容量超过最大值处理方式
    private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ?
            Integer.MAX_VALUE :
            MAX_ARRAY_SIZE;
    }

    // 设置vector 的size大小,注意并不是length,当设置的newsize大于当前的size那么考虑是否要扩容,如果小于,那么把多余的部分全部设置为null
    public synchronized void setSize(int newSize) {
        modCount++;
        if (newSize > elementCount) {
            ensureCapacityHelper(newSize);
        } else {
            for (int i = newSize ; i < elementCount ; i++) {
                elementData[i] = null;
            }
        }
        elementCount = newSize;
    }

    //容量
    public synchronized int capacity() {
        return elementData.length;
    }

    //元素个数
    public synchronized int size() {
        return elementCount;
    }

    //实际存储的元素是否为空
    public synchronized boolean isEmpty() {
        return elementCount == 0;
    }

    //根据索引生成 对应元素的枚举 ,索引为0 为枚举第一个元素,索引为1为枚举第二个元素,and so on
    public Enumeration elements() {
        return new Enumeration() {
            int count = 0;

            public boolean hasMoreElements() {
                return count < elementCount;
            }
//可以看到此方法会抛出异常,在调用的时候务必先调用hasMoreElements进行判断
            public E nextElement() {
                //提供vector对象锁,保持同步
                synchronized (Vector.this) {
                    if (count < elementCount) {
                        return elementData(count++);
                    }
                }
                throw new NoSuchElementException("Vector Enumeration");
            }
        };
    }

    //判别是否存在对象 o
    public boolean contains(Object o) {
        return indexOf(o, 0) >= 0;
    }

    //返回第一个出现o的位置索引
    public int indexOf(Object o) {
        return indexOf(o, 0);
    }

//主要是判断o是否为空,其他都是顺序查找,很简单O(n)
    public synchronized int indexOf(Object o, int index) {
        if (o == null) {
            for (int i = index ; i < elementCount ; i++)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = index ; i < elementCount ; i++)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }
//从数组后端开始查找起,出现的第一个元素
    public synchronized int lastIndexOf(Object o) {
        return lastIndexOf(o, elementCount-1);
    }
//主要是判断o是否为空,其他都是顺序查找,很简单O(n)
    public synchronized int lastIndexOf(Object o, int index) {
        if (index >= elementCount)
            throw new IndexOutOfBoundsException(index + " >= "+ elementCount);

        if (o == null) {
            for (int i = index; i >= 0; i--)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = index; i >= 0; i--)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

    //方法等同于List接口的get(i)方法说
    public synchronized E elementAt(int index) {
        if (index >= elementCount) {
            throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
        }

        return elementData(index);
    }

    public synchronized E firstElement() {
        if (elementCount == 0) {
            throw new NoSuchElementException();
        }
        return elementData(0);
    }
    public synchronized E lastElement() {
        if (elementCount == 0) {
            throw new NoSuchElementException();
        }
        return elementData(elementCount - 1);
    }

    public synchronized void setElementAt(E obj, int index) {
        if (index >= elementCount) {
            throw new ArrayIndexOutOfBoundsException(index + " >= " +
                                                     elementCount);
        }
        elementData[index] = obj;
    }

    public synchronized void removeElementAt(int index) {
        modCount++;
        if (index >= elementCount) {
            throw new ArrayIndexOutOfBoundsException(index + " >= " +
                                                     elementCount);
        }
        else if (index < 0) {
            throw new ArrayIndexOutOfBoundsException(index);
        }
        int j = elementCount - index - 1;
        if (j > 0) {
            System.arraycopy(elementData, index + 1, elementData, index, j);
        }
        elementCount--;
        elementData[elementCount] = null; /* to let gc do its work */
    }

    public synchronized void insertElementAt(E obj, int index) {
        modCount++;
        if (index > elementCount) {
            throw new ArrayIndexOutOfBoundsException(index
                                                     + " > " + elementCount);
        }
        ensureCapacityHelper(elementCount + 1);
        System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
        elementData[index] = obj;
        elementCount++;
    }

    public synchronized void addElement(E obj) {
        modCount++;
        ensureCapacityHelper(elementCount + 1);
        elementData[elementCount++] = obj;
    }

    //删除从数组左边起第一个与obj相等的元素
    public synchronized boolean removeElement(Object obj) {
        modCount++;
        int i = indexOf(obj);
        if (i >= 0) {
            removeElementAt(i);
            return true;
        }
        return false;
    }

    //删除所有元素
    public synchronized void removeAllElements() {
        modCount++;
        // Let gc do its work
        for (int i = 0; i < elementCount; i++)
            elementData[i] = null; //gc垃圾回收

        elementCount = 0;
    }

    // clone克隆Vector,重新生成的数组与原来的数组属于不同引用,重新分配内存
    public synchronized Object clone() {
        try {
            @SuppressWarnings("unchecked")
                Vector v = (Vector) super.clone();
            v.elementData = Arrays.copyOf(elementData, elementCount);
            v.modCount = 0;
            return v;
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError(e);
        }
    }
    public synchronized Object[] toArray() {
        return Arrays.copyOf(elementData, elementCount);
    }

    @SuppressWarnings("unchecked")
    public synchronized  T[] toArray(T[] a) {//泛型指定生成的数组的类型
        if (a.length < elementCount)
            return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());

        System.arraycopy(elementData, 0, a, 0, elementCount);

        if (a.length > elementCount)
            a[elementCount] = null;

        return a;
    }
//没同步,也没判断会不会抛出异常,为什么会存在呢?因为这个方法外部不能调用,它由其他内部(public)同步方法调用,保证线程安全
    @SuppressWarnings("unchecked")
    E elementData(int index) {
        return (E) elementData[index];
    }
    public synchronized E get(int index) {
        if (index >= elementCount)
            throw new ArrayIndexOutOfBoundsException(index);

        return elementData(index);
    }

//返回的是旧值
    public synchronized E set(int index, E element) {
        if (index >= elementCount)
            throw new ArrayIndexOutOfBoundsException(index);

        E oldValue = elementData(index);
        elementData[index] = element;
        return oldValue;
    }

    public synchronized boolean add(E e) {
        modCount++;
        ensureCapacityHelper(elementCount + 1);
        elementData[elementCount++] = e;
        return true;
    }

    public boolean remove(Object o) {
        return removeElement(o);
    }

    public void add(int index, E element) {
        insertElementAt(element, index);
    }

//返回被移除的对象
    public synchronized E remove(int index) {
        modCount++;
        if (index >= elementCount)
            throw new ArrayIndexOutOfBoundsException(index);
        E oldValue = elementData(index);

        int numMoved = elementCount - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--elementCount] = null; // Let gc do its work

        return oldValue;
    }

//清空
    public void clear() {
        removeAllElements();
    }

    // 批量操作,判断vector中是否包含集合
    // 特别注意:判断集合集合中每个元素是否都存在vector中,并没有顺序可言,单独判断,复杂度为O(m*n)
    public synchronized boolean containsAll(Collection c) {
        return super.containsAll(c);
        // 父类方法AbstractCollection
        /*
        public boolean containsAll(Collection c) {
        for (Object e : c)
            if (!contains(e))
                return false;
            return true;
       }
       */
    }

    //集合到vector中,会抛出空指针异常
    //特别注意:当正在进行此操作的时候,集合C又被另外一个线程修改,那么得到的vector是不确定的
    public synchronized boolean addAll(Collection c) {
        modCount++;
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityHelper(elementCount + numNew);
        System.arraycopy(a, 0, elementData, elementCount, numNew);
        elementCount += numNew;
        return numNew != 0;
    }

   // 删除指定集合中切存在于vector中的元素
    // 遍历vector中每个元素,判断是否存在于collection中,存在则删除,复杂度为O(M*n)
    public synchronized boolean removeAll(Collection c) {
        return super.removeAll(c);
    }

   // 与前面一个函数功能相反,保留存在于Collection中的vector的元素
    public synchronized boolean retainAll(Collection c) {
        return super.retainAll(c);
    }

   //指定索引,插入集合
    public synchronized boolean addAll(int index, Collection c) {
        modCount++;
        if (index < 0 || index > elementCount)
            throw new ArrayIndexOutOfBoundsException(index);

        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityHelper(elementCount + numNew);

        int numMoved = elementCount - index;
        if (numMoved > 0)
            System.arraycopy(elementData, index, elementData, index + numNew,
                             numMoved);

        System.arraycopy(a, 0, elementData, index, numNew);
        elementCount += numNew;
        return numNew != 0;
    }

    // 顺序、值、大小都要相等,使用父类AbstractList方法实现,顺序由listIterator()保证
    public synchronized boolean equals(Object o) {
        return super.equals(o);
    }
    public synchronized int hashCode() {
        return super.hashCode();
    }
    public synchronized String toString() {
        return super.toString();
    }
    //AbstractCollection方法
/*
public String toString() {
        Iterator it = iterator();
        if (! it.hasNext())
            return "[]";

        StringBuilder sb = new StringBuilder();
        sb.append('[');
        for (;;) {
            E e = it.next();
            sb.append(e == this ? "(this Collection)" : e);
            if (! it.hasNext())
                return sb.append(']').toString();
            sb.append(',').append(' ');
        }
    }
*/
    // 根据指定索引,返回子集合
    //特别注意: 返回的子集合还是依赖于此vector的,并不是重新分配内存的
    //对子集合的一切操作将会影响vector的变化,比如对子集合的排序(这个应用的非常广)、清空子集合等都会影响vector元素变化,但是与此同时也要考虑到多线程的不确定性
    //eg:list.subList(from, to).clear();清空
    //由于使用了Collections.synchronizedList进行同步处理(对象锁为当前vector对象),因此对vector的操作和对子集合的操作是同步处理的
    public synchronized List subList(int fromIndex, int toIndex) {
        return Collections.synchronizedList(super.subList(fromIndex, toIndex),
                                            this);
    }

   //删除指定范围子集合
    protected synchronized void removeRange(int fromIndex, int toIndex) {
        modCount++;
        int numMoved = elementCount - toIndex;
        System.arraycopy(elementData, toIndex, elementData, fromIndex,
                         numMoved);

        // Let gc do its work
        int newElementCount = elementCount - (toIndex-fromIndex);
        while (elementCount != newElementCount)
            elementData[--elementCount] = null;
    }

    //序列化
    private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException {
        final java.io.ObjectOutputStream.PutField fields = s.putFields();
        final Object[] data;
        synchronized (this) {
            fields.put("capacityIncrement", capacityIncrement);
            fields.put("elementCount", elementCount);
            data = elementData.clone();
        }
        fields.put("elementData", data);
        s.writeFields();
    }

    // 返回指定游标的列表迭代器,此迭代器ListIterator可以向前向后迭代,比普通iterator()方法强大Itr,推荐使用
    public synchronized ListIterator listIterator(int index) {
        if (index < 0 || index > elementCount)
            throw new IndexOutOfBoundsException("Index: "+index);
        return new ListItr(index);
    }

    //同上一个方法,默认游标位置为起始位置0
    public synchronized ListIterator listIterator() {
        return new ListItr(0);
    }

    //返回一个迭代器
    public synchronized Iterator iterator() {
        return new Itr();
    }

    /**
     * An optimized version of AbstractList.Itr
     */
     //迭代器默认实现,会出现fail-fast机制
    private class Itr implements Iterator<E> {
        int cursor;       // index of next element to return
        int lastRet = -1; // index of last element returned; -1 if no such
        int expectedModCount = modCount;

        public boolean hasNext() {
            // Racy but within spec, since modifications are checked
            // within or after synchronization in next/previous
            return cursor != elementCount;
        }

        public E next() {
            synchronized (Vector.this) {
                checkForComodification();//检查在迭代期间,检查vector是否存在结构修改
                int i = cursor;
                if (i >= elementCount)
                    throw new NoSuchElementException();
                cursor = i + 1;
                return elementData(lastRet = i);
            }
        }

        public void remove() {
            if (lastRet == -1)
                throw new IllegalStateException();
            synchronized (Vector.this) {
                checkForComodification();
                Vector.this.remove(lastRet);
                expectedModCount = modCount;
            }
            cursor = lastRet;
            lastRet = -1;
        }

        @Override
        public void forEachRemaining(Consumersuper E> action) {
            Objects.requireNonNull(action);
            synchronized (Vector.this) {
                final int size = elementCount;
                int i = cursor;
                if (i >= size) {
                    return;
                }
        @SuppressWarnings("unchecked")
                final E[] elementData = (E[]) Vector.this.elementData;
                if (i >= elementData.length) {
                    throw new ConcurrentModificationException();
                }
                while (i != size && modCount == expectedModCount) {
                    action.accept(elementData[i++]);
                }
                // update once at end of iteration to reduce heap write traffic
                cursor = i;
                lastRet = i - 1;
                checkForComodification();
            }
        }

        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }

    //列表迭代器,可以向前向后遍历
    final class ListItr extends Itr implements ListIterator {
        ListItr(int index) {
            super();
            cursor = index;
        }

        public boolean hasPrevious() {
            return cursor != 0;
        }

        public int nextIndex() {
            return cursor;
        }

        public int previousIndex() {
            return cursor - 1;
        }

        public E previous() {
            synchronized (Vector.this) {
                checkForComodification();
                int i = cursor - 1;
                if (i < 0)
                    throw new NoSuchElementException();
                cursor = i;
                return elementData(lastRet = i);
            }
        }

        public void set(E e) {
            if (lastRet == -1)
                throw new IllegalStateException();
            synchronized (Vector.this) {
                checkForComodification();
                Vector.this.set(lastRet, e);
            }
        }

        public void add(E e) {
            int i = cursor;
            synchronized (Vector.this) {
                checkForComodification();
                Vector.this.add(i, e);
                expectedModCount = modCount;
            }
            cursor = i + 1;
            lastRet = -1;
        }
    }
//jdk1.8 新加入的方法,遍历vector中每个元素,并应用于action行为,支持lambda表达式
    @Override
    public synchronized void forEach(Consumersuper E> action) {
        Objects.requireNonNull(action);
        final int expectedModCount = modCount;
        @SuppressWarnings("unchecked")
        final E[] elementData = (E[]) this.elementData;
        final int elementCount = this.elementCount;
        for (int i=0; modCount == expectedModCount && i < elementCount; i++) {
            action.accept(elementData[i]);
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
    }
//支持lambda表达式,判断是否复合某种条件,然后做其他操作
    @Override
    @SuppressWarnings("unchecked")
    public synchronized boolean removeIf(Predicatesuper E> filter) {
        Objects.requireNonNull(filter);
        // figure out which elements are to be removed
        // any exception thrown from the filter predicate at this stage
        // will leave the collection unmodified
        int removeCount = 0;
        final int size = elementCount;
        final BitSet removeSet = new BitSet(size);//位集合,记录符合条件的元素的索引
        final int expectedModCount = modCount;
        for (int i=0; modCount == expectedModCount && i < size; i++) {
            @SuppressWarnings("unchecked")
            final E element = (E) elementData[i];
            if (filter.test(element)) {
                removeSet.set(i);
                removeCount++;
            }
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }

        //删除符合条件的元素,左移
        final boolean anyToRemove = removeCount > 0;
        if (anyToRemove) {
            final int newSize = size - removeCount;
            for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
                i = removeSet.nextClearBit(i);
                elementData[j] = elementData[i];
            }
            for (int k=newSize; k < size; k++) {
                elementData[k] = null;  // Let gc do its work
            }
            elementCount = newSize;
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
            modCount++;
        }

        return anyToRemove;
    }
//支持lambda表达式,对全部元素进行替换操作
    @Override
    @SuppressWarnings("unchecked")
    public synchronized void replaceAll(UnaryOperator operator) {
        Objects.requireNonNull(operator);
        final int expectedModCount = modCount;
        final int size = elementCount;
        for (int i=0; modCount == expectedModCount && i < size; i++) {
            elementData[i] = operator.apply((E) elementData[i]);
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        modCount++;
    }
// Arrays.sort 排序
    @SuppressWarnings("unchecked")
    @Override
    public synchronized void sort(Comparatorsuper E> c) {
        final int expectedModCount = modCount;
        Arrays.sort((E[]) elementData, 0, elementCount, c);
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        modCount++;
    }

    /**
     * Creates a late-binding
     * and fail-fast {@link Spliterator} over the elements in this
     * list.
     *
     * 

The {@code Spliterator} reports {@link Spliterator#SIZED}, * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}. * Overriding implementations should document the reporting of additional * characteristic values. * * @return a {@code Spliterator} over the elements in this list * @since 1.8 */ @Override public Spliterator spliterator() { return new VectorSpliterator<>(this, null, 0, -1, 0); } /** Similar to ArrayList Spliterator */ static final class VectorSpliterator implements Spliterator { private final Vector list; private Object[] array; private int index; // current index, modified on advance/split private int fence; // -1 until used; then one past last index private int expectedModCount; // initialized when fence set /** Create new spliterator covering the given range */ VectorSpliterator(Vector list, Object[] array, int origin, int fence, int expectedModCount) { this.list = list; this.array = array; this.index = origin; this.fence = fence; this.expectedModCount = expectedModCount; } private int getFence() { // initialize on first use int hi; if ((hi = fence) < 0) { synchronized(list) { array = list.elementData; expectedModCount = list.modCount; hi = fence = list.elementCount; } } return hi; } public Spliterator trySplit() { int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid) ? null : new VectorSpliterator(list, array, lo, index = mid, expectedModCount); } @SuppressWarnings("unchecked") public boolean tryAdvance(Consumersuper E> action) { int i; if (action == null) throw new NullPointerException(); if (getFence() > (i = index)) { index = i + 1; action.accept((E)array[i]); if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } return false; } @SuppressWarnings("unchecked") public void forEachRemaining(Consumersuper E> action) { int i, hi; // hoist accesses and checks from loop Vector lst; Object[] a; if (action == null) throw new NullPointerException(); if ((lst = list) != null) { if ((hi = fence) < 0) { synchronized(lst) { expectedModCount = lst.modCount; a = array = lst.elementData; hi = fence = lst.elementCount; } } else a = array; if (a != null && (i = index) >= 0 && (index = hi) <= a.length) { while (i < hi) action.accept((E) a[i++]); if (lst.modCount == expectedModCount) return; } } throw new ConcurrentModificationException(); } public long estimateSize() { return (long) (getFence() - index); } public int characteristics() { return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } } }

Vector使用案例

  • subList() 用法
/**
 * Created by Genge on 2016-06-19.
 */
public class Solution {
    public static void main(String[] args) {
        Vector vector = new Vector();
        vector.add("Genge");
        vector.add("Hello");
        vector.add("World");
        System.out.println("处理前的结果:");
        Iterator iterator = vector.iterator();
        while (iterator.hasNext()) {
            System.out.println(iterator.next());
        }

        List sublist = vector.subList(1, 2);

        sublist.clear();

        sublist.add("SB");
        sublist.add("Huangdou");

        System.out.println("处理后结果:");
        Iterator iter = vector.iterator();
        while (iter.hasNext()) {
            System.out.println(iter.next());
        }
    }
}

结果图如下:
Java源代码分析之Vector数组_第2张图片

你可能感兴趣的:(Java,Java源代码分析)