TensroFlow学习——第三章(二)

MINIST数字识别问题

卷积神经网络实现手写数字识别

采用了L2正则化、滑动平均模型,固定学习率
训练结果为:训练集100%,验证集99.4%,测试集99.43%
第一部分:前向传播和网络参数

# 定义前向传播和神经网络中的参数
import tensorflow as tf

# 配置神经网络参数
INPUT_NODE=784  # 输入层节点个数
OUTPUT_NODE=10  # 输出层节点个数

IMAGE_SIZE=28
NUM_CHANNELS=1

# 第一层卷积的尺寸和深度
CONV1_DEEP=32
CONV1_SIZE=5
# 第二层卷积的尺寸和深度
CONV2_DEEP=64
CONV2_SIZE=5
# 全连接层的节点个数
FC_SIZE=512


# 前向传播
def inference(input_tensor,regularizer,avg_class,train=True,reuse=False):
	# 第一层卷积层
	with tf.variable_scope('layer_conv1',reuse=reuse):
		conv1_weights=tf.get_variable('weights',[CONV1_SIZE,CONV1_SIZE,NUM_CHANNELS,CONV1_DEEP],initializer=tf.truncated_normal_initializer(mean=0,stddev=0.1))
		conv1_biases=tf.get_variable('biases',[CONV1_DEEP],initializer=tf.constant_initializer(0.0))
		conv1=tf.nn.conv2d(input_tensor,conv1_weights,[1,1,1,1],padding='SAME')
		relu1=tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases))

	# 第一层池化层
	with tf.name_scope('layer_pool1'):
		pool1=tf.nn.max_pool(relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

	# 第二层卷积层
	with tf.variable_scope('layer_conv2',reuse=reuse):
		conv2_weights=tf.get_variable('weights',[CONV2_SIZE,CONV2_SIZE,CONV1_DEEP,CONV2_DEEP],initializer=tf.truncated_normal_initializer(stddev=0.1))
		conv2_biases=tf.get_variable('biases',[CONV2_DEEP],initializer=tf.constant_initializer(0.0))
		conv2=tf.nn.conv2d(pool1,conv2_weights,[1,1,1,1],padding='SAME')
		relu2=tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases))

	# 第二层池化层
	with tf.name_scope('layer_pool2'):
		pool2=tf.nn.max_pool(relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

	# 将多维向量展开作为密集连接层的输入
	pool_shape=pool2.get_shape().as_list()
	# pool_shape[0]为BATCH_SIZE维度
	nodes=pool_shape[1]*pool_shape[2]*pool_shape[3]
	FC_INPUT=tf.reshape(pool2,[pool_shape[0],nodes])

	# 声明第一层神经网络的变量并完成前向传播
	with tf.variable_scope('layer1',reuse=reuse):
		weights=tf.get_variable('weights',[nodes,FC_SIZE],initializer=tf.truncated_normal_initializer(mean=0,stddev=0.1))
		biases=tf.get_variable('biases',[FC_SIZE],initializer=tf.constant_initializer(0.0))
		if regularizer != None:
			tf.add_to_collection('losses',regularizer(weights))
		if avg_class == None:
			fc1=tf.nn.relu(tf.matmul(FC_INPUT,weights)+biases)
		else:
			fc1=tf.nn.relu(tf.matmul(FC_INPUT,avg_class.average(weights))+avg_class.average(biases))
		# dropout正则化,降低过拟合
		if train:
			fc1=tf.nn.dropout(fc1,0.5)
	# 声明第二层神经网络的变量并完成前向传播
	with tf.variable_scope('layer2',reuse=reuse):
		weights=tf.get_variable('weights',[FC_SIZE,OUTPUT_NODE],initializer=tf.truncated_normal_initializer(mean=0,stddev=0.1))
		biases=tf.get_variable('biases',[OUTPUT_NODE],initializer=tf.constant_initializer(0.0))
		if regularizer != None:
			tf.add_to_collection('losses',regularizer(weights))
		if avg_class == None:
			fc2=tf.matmul(fc1,weights)+biases
		else:
			fc2=tf.matmul(fc1,avg_class.average(weights))+avg_class.average(biases)
	return fc2

第二部分:训练,包括训练集和验证集

# 神经网络训练程序
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data

import mnist_inference

# 配置神经网络参数
BATCH_SIZE=128
LEARNING_RATE_BASE=0.8
LEARNING_RATE_DECAY=0.99
REGULARAZTION_RATE=0.0001
TRAINING_STEP=30000
MOVING_AVERAGE_DECAY=0.99
# 模型保存路径和文件名
MODEL_SAVE_PATH='./model2.ckpt'
# 训练参数
train_acc,valid_acc=[],[]
train_loss,valid_loss=[],[]
epochs=[]


def train(mnist):
	x=tf.placeholder(tf.float32,[None,mnist_inference.IMAGE_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.NUM_CHANNELS],name='x-input')
	y_=tf.placeholder(tf.float32,[None,mnist_inference.OUTPUT_NODE],name='y-input')

	regularizer=tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)

	y=mnist_inference.inference(x,regularizer=regularizer,avg_class=None,reuse=False,train=True)
	global_step=tf.Variable(0,trainable=False)

	variable_averages=tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY,global_step)
	variable_averages_op=variable_averages.apply(tf.trainable_variables())

	cross_entropy=tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y,labels=tf.argmax(y_,1))
	cross_entropy_mean=tf.reduce_mean(cross_entropy)

	loss=cross_entropy_mean+tf.add_n(tf.get_collection('losses'))

	learning_rate=0.1
		# tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,mnist.train.num_examples/BATCH_SIZE,LEARNING_RATE_DECAY)
	train_step=tf.train.GradientDescentOptimizer(learning_rate).minimize(loss,global_step)

	with tf.control_dependencies([train_step,variable_averages_op]):
		train_op=tf.no_op(name='train')

	# 计算使用滑动平均之后的前向传播结果
	average_y=mnist_inference.inference(x,regularizer=regularizer,avg_class=variable_averages,train=True,reuse=tf.AUTO_REUSE)

	correct_prediction=tf.equal(tf.argmax(average_y,1),tf.argmax(y_,1))
	#tf.cast为转化数据格式
	accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

	# 初始化TensorFlow持久化类
	saver=tf.train.Saver()

	with tf.Session() as sess:
		tf.initialize_all_variables().run()

		for i in range(TRAINING_STEP):
			xs,ys=mnist.train.next_batch(BATCH_SIZE)
			xs=np.reshape(xs,[BATCH_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.NUM_CHANNELS])
			_,tra_loss,step=sess.run([train_op,loss,global_step],feed_dict={x:xs,y_:ys})

			val_xs,val_ys=mnist.validation.next_batch(BATCH_SIZE)
			val_xs=np.reshape(val_xs,[BATCH_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.NUM_CHANNELS])
			val_loss=sess.run([loss],feed_dict={x:val_xs,y_:val_ys})

			epochs.append(step)
			train_acc.append(sess.run(accuracy,feed_dict={x:xs,y_:ys}))
			train_loss.append(tra_loss)
			valid_acc.append(sess.run(accuracy,feed_dict={x:val_xs,y_:val_ys}))
			valid_loss.append(val_loss)
			# 每1000轮
			if (i+1)%1000==0:
				print('<==%d==>,loss on training batch is %g.'%(i+1,tra_loss))

		print(train_acc[-1])
		print(valid_acc[-1])
		plt.figure(1)
		plt.grid(True)
		plt.subplot(1,2,1)
		plt.plot(epochs, train_loss, color='red',label='train')
		plt.plot(epochs, valid_loss, color='blue',label='valid')
		plt.legend()
		plt.xlabel('Epochs',fontsize=15)
		plt.ylabel('Y',fontsize=15)
		plt.title('Loss',fontsize=15)
		plt.subplot(1,2,2)
		plt.plot(epochs, train_acc, color='red',label='train')
		plt.plot(epochs, valid_acc, color='blue',label='valid')
		plt.legend()
		plt.xlabel('Epochs',fontsize=15)
		plt.ylabel('Y',fontsize=15)
		plt.title('Acc',fontsize=15)
		plt.show()

		saver.save(sess,MODEL_SAVE_PATH)


def main(argv=None):
	mnist=input_data.read_data_sets('E:/User-Duanduan/python/Deep-Learning/tensorflow/data/MNIST_data/',one_hot=True)
	train(mnist)

if __name__=='__main__':
	tf.app.run()

第三部分:测试集

# 测试模型
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import matplotlib.pyplot as plt
import numpy as np
import mnist_inference
import mnist_train

BATCH_SIZE=10000

def evaluate(mnist):
	with tf.Graph().as_default() as g:
		# 定义输入输出格式
		x=tf.placeholder(tf.float32,[BATCH_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.NUM_CHANNELS],name='x-input')
		y_=tf.placeholder(tf.float32,[BATCH_SIZE,mnist_inference.OUTPUT_NODE],name='y-input')

		# 测试批量图
		y=mnist_inference.inference(x,None,None,train=False, reuse=False)
		correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
		accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

		# 读取测试图集
		xs=mnist.test.images
		xs=np.reshape(xs,[BATCH_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.NUM_CHANNELS])
		test_feed={x:xs,y_:mnist.test.labels}

		# 测试单张图片
		show_image=mnist.test.images[5000]
		label=mnist.test.labels[5000]
		flatten_image=np.reshape(show_image,[1,mnist_inference.IMAGE_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.NUM_CHANNELS])
		actual_label=label.tolist().index(max(label.tolist()))

		x_test=tf.placeholder(tf.float32,[1,mnist_inference.IMAGE_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.NUM_CHANNELS],name='x-input')
		y_test=mnist_inference.inference(x_test,None,None,train=False,reuse=tf.AUTO_REUSE)
		pred_label=tf.argmax(y_test,1)

		variable_averages=tf.train.ExponentialMovingAverage(mnist_train.MOVING_AVERAGE_DECAY)
		variable_to_restore=variable_averages.variables_to_restore()

		saver=tf.train.Saver(variable_to_restore)

		with tf.Session() as sess:
			# 加载模型
			saver.restore(sess,'./model.ckpt')
			# 批量测试
			accuracy_score=sess.run(accuracy,feed_dict=test_feed)
			print('Test accuracy is %g%%'%(accuracy_score*100))
			# 单张测试
			result=sess.run(pred_label,feed_dict={x_test:flatten_image})
			print('Actual:%g,predtion:%g'%(actual_label,result))

			show_image=tf.reshape(show_image,[28,28])
			plt.figure('Show')
			plt.imshow(show_image.eval())
			plt.show()

def main(argv=None):
	mnist=input_data.read_data_sets('E:/User-Duanduan/python/Deep-Learning/tensorflow/data/MNIST_data/',one_hot=True)
	evaluate(mnist)

if __name__=='__main__':
	tf.app.run()

你可能感兴趣的:(TensroFlow学习——第三章(二))