- 机器学习19-Transformer和AlexNet思考
坐吃山猪
机器学习机器学习transformer人工智能
Transformer和AlexNet思考关于Transformer和AlexNet发展的一些思考1-核心知识点Word2Vec的作用是什么,和Transformer的诞生有什么关系吗?AlexNet的主要核心思路是什么,为什么表现那么好?现在有什么比AlexNet更优秀的算法2-思路整理1-Word2Vec的作用是什么,和Transformer的诞生有什么关系吗?Word2Vec的作用Word2
- DPDK网卡PMD驱动
风流网民
DPDKDPDK
以/home/user/dpdk-stable-18.11.11/drivers/net/i40e目录下的驱动为例源代码文件有#lsbasei40e_ethdev_vf.ci40e_logs.hi40e_regs.hi40e_rxtx_vec_altivec.ci40e_rxtx_vec_neon.ci40e_vf_representor.crte_pmd_i40e.ci40e_ethdev.ci
- C++ 程序崩溃排查
默执_
C++基础c++开发语言
程序报错,可以根据报错信息,日志文件来初步排查。但还是无法知道具体原因,则采用Coredump分析。使用空指针来赋值,故意制造错误。1、临时开启Coredump存储设置2、编译代码,运行程序3、用gdb调试可以准确的找到报错位置在18行#include#include#includeusingnamespacestd;voidtest(vectorv){coutmy_vec{"1","2","3"
- 【深度学习:进阶篇】--4.2.词嵌入和NLP
西柚小萌新吖(●ˇ∀ˇ●)
#深度学习深度学习自然语言处理人工智能
在RNN中词使用one_hot表示的问题假设有10000个词每个词的向量长度都为10000,整体大小太大没能表示出词与词之间的关系例如Apple与Orange会更近一些,Man与Woman会近一些,取任意两个向量计算内积都为0目录1.词嵌入1.1.特点1.3.word2vec介绍1.3.Word2Vec案例1.3.1.训练语料1.3.2.步骤1.3.3.代码2.测试代码1.词嵌入定义:指把一个维数
- [AI笔记]-Word2Vec面试考点
Micheal超
AI笔记人工智能笔记word2vec
✅一、基础认知类什么是Word2Vec?它的基本思想是什么?关键词:将词语转换为向量表示;捕捉语义关系;基于上下文预测Word2Vec与One-hot编码的区别?关键词:维度灾难(维度过高,存储空间大)、高稀疏性、语义表达能力(没有距离概念,无法计算相似度)、内积关系Word2Vec的两种模型是什么?它们有何区别?答案:Word2Vec的重要假设:文本中离得越近的词语相似度越高。主要有:CBOW(
- (Note)音频向量化表示
音频向量化表示经典语音特征(MFCC等)语音信号的传统特征提取方法包括MFCC(梅尔倒谱系数)、PLP等,用于描述语音的频谱包络信息。这些特征设计依据生理听觉模型,在ASR、情感识别等任务中长期有效。但它们仍属浅层特征,无法自动学习更高阶的语言和语音信息,对说话人和环境的鲁棒性有限,通常需配合复杂模型来提高性能。梅尔倒谱系数特征示意图自监督语音模型(Wav2Vec、HuBERT等)近年来,语音领域
- embedding模型有哪些?如何选择合适的embedding模型?
行云流水AI笔记
embedding
embedding模型是一种将数据映射到低维空间的模型,常用于自然语言处理、推荐系统、图像识别等领域。以下是一些常见的embedding模型:Word2Vec:CBOW(ContinuousBag-of-Words):通过上下文预测中心词。Skip-Gram:通过中心词预测上下文。GloVe(GlobalVectorsforWordRepresentation):结合了词频统计和Word2Vec的
- 3秒搞定DeepSeek数学公式转Word!学生党救星(附代码实测)
Uyker
python编辑器
适用场景:论文交稿deadline/报告美化/作业急救工具白嫖指南:免费+免安装方案优先一、终极方案:Mathpix截图转公式(强推!)效果:复杂矩阵→完美还原步骤:复制DeepSeek输出的LaTeX代码(例)\vec{F}=q(\vec{E}+\vec{v}\times\vec{B})打开Mathpix官网→按Ctrl+Alt+M截取公式右键粘贴到Word→自动变身标准公式!✅优势:识别准确率
- VECTOR 详解
luer9
vector
在c++中,vector是一个十分有用的容器,下面对这个容器做一下总结。1基本操作(1)头文件#include.(2)创建vector对象,vectorvec;(3)尾部插入数字:vec.push_back(a);(4)使用下标访问元素,cout::iteratorit;for(it=vec.begin();it!=vec.end();it++)cout#include#include#inclu
- 自然语言处理基础知识入门(三) RNN,LSTM,GRU模型详解
这个男人是小帅
NLP自然语言知识梳理入门rnn自然语言处理lstmgru人工智能神经网络
文章目录前言一、RNN模型1.1RNN的作用1.2RNN基本结构1.3双向循环神经网络1.4深层双向循环神经网络1.5RNN的梯度爆炸和消失问题二、LSTM模型2.1LSTM和RNN的结构对比2.2LSTM模型细节三、GRU模型总结前言在上一章节中,深入探讨了Word2vec模型的两种训练策略以及创新的优化方法,从而得到了优质的词嵌入表示。不仅如此,Word2vec作为一种语言模型,也具备根据上下
- Word2Vec 原理是什么
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythonword2vec人工智能自然语言处理
Word2Vec原理是什么一、核心概念:从词语到向量的语义映射Word2Vec是2013年由Google提出的词嵌入(WordEmbedding)模型,其核心目标是将自然语言中的词语转换为稠密的连续向量(词向量),使向量空间中的距离能反映词语的语义相关性。本质:通过神经网络学习词语的分布式表示(DistributedRepresentation),打破传统one-hot编码“维度高、无语义关联”的
- 怎么对词编码进行可视化:Embedding Projector
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythonembedding
怎么对词编码进行可视化:EmbeddingProjectorhttps://projector.tensorflow.org/EmbeddingProjector是用于可视化高维向量嵌入(如词向量、图像特征向量等)的工具,能帮你理解向量间的关系,下面以词向量分析和**简单自定义数据(比如特征向量)**为例,教你怎么用:一、词向量分析场景(以图中Word2Vec数据为例)1.加载数据与基础查看图里已
- text2vec-large-chinese 和m3e-large国外\国内下载方式
爱吃土豆的马铃薯ㅤㅤㅤㅤㅤㅤㅤㅤㅤ
DB-GPTtext2vec-largem3e-large
在下载之前,你得先确保已经安装了GitLFS,因为HuggingFace上的大模型文件需要用它来处理。gitlfsinstall外网地址:gitclonehttps://huggingface.co/GanymedeNil/text2vec-large-chinesegitclonehttps://huggingface.co/moka-ai/m3e-large内网地址:text2vec-larg
- python哈夫曼树压缩_哈夫曼树及python实现
七十二便
python哈夫曼树压缩
最近在看《tensorflow实战》中关于RNN一节,里面关于word2vec中涉及到了哈夫曼树,因此在查看了很多博客(文末)介绍后,按自己的理解对概念进行了整理(拼凑了下TXT..),最后自己用python实现Haffuman树的构建及编码。哈夫曼(huffman)树基本概念路径和路径长度:树中一个结点到另一个结点之间的分支构成这两个结点之间的路径;路径上的分枝数目称作路径长度,它等于路径上的结
- 词编码模型有哪些
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython人工智能机器学习数据挖掘分类算法
词编码模型有哪些词编码模型在高维向量空间的关系解析与实例说明如Word2Vec、BERT、Qwen等一、高维向量空间的基础概念词编码模型(如Word2Vec、BERT、Qwen等)的核心是将自然语言符号映射为稠密的高维向量,使语义相近的词汇在向量空间中位置接近。以Qwen模型为例,其15万字符的词表规模(通常基于字节对编码BPE)本质是在高维空间中为每个词分配唯一的坐标点,而向量之间的几何关系(如
- 论文学习笔记 | AAAI-2022 TS2Vec:实现时间序列通用表示
叶庭云
人工智能学习之路时间序列表征学习TS2Vec分层对比学习上下文一致性正样本选择策略
CSDN叶庭云:https://yetingyun.blog.csdn.net/APA引用格式:Yue,Z.,Wang,Y.,Duan,J.,Yang,T.,Huang,C.,Tong,Y.,&Xu,B.(2022,June).TS2Vec:Towardsuniversalrepresentationoftimeseries.InProceedingsoftheAAAIConferenceonAr
- Datawhale 2025年2月组队学习- 推荐系统教程FunRec #Task3
dxnb22
Datawhale学习笔记人工智能推荐算法
第二章基于向量的召回1.item2vec未完待续……2.youtubeDnn3.经典双塔模型
- NLP学习路线图(四十五):偏见与公平性
摸鱼许可证
NLP学习路线图自然语言处理学习人工智能nlp
一、偏见:算法中的“隐形歧视者”NLP模型本身并无立场,其偏见主要源于训练数据及算法设计:数据根源:人类偏见的镜像历史与社会刻板印象:大量文本数据记录着人类社会固有的偏见。词嵌入模型(如Word2Vec,GloVe)曾显示:“男人”与“程序员”的关联度远高于“女人”;“非裔美国人姓名”更易与负面词汇关联。训练语料库若包含带有性别歧视、种族歧视或地域歧视的文本,模型便可能吸收并重现这些关联。代表性偏
- 线性相关与线性无关
二分掌柜的
数学物理线性代数算法机器学习
线性相关与线性无关flyfish线性相关与无关的本质——是否存在冗余向量,使得部分向量可被其他向量的线性组合表示。线性相关:存在冗余向量(可被线性组合表示)例子1:二维共线向量(最直观的冗余)向量组:a⃗=(1,2)\vec{a}=(1,2)a=(1,2),b⃗=(2,4)\vec{b}=(2,4)b=(2,4)b⃗=2a⃗\vec{b}=2\vec{a}b=2a,即b⃗\vec{b}b是a⃗\v
- 腾讯开源 AniPortrait:音频驱动的逼真肖像动画生成革命
gogoMark
开源音视频
一、技术架构的双阶段创新在数字内容创作领域,静态图像的表现力已难以满足沉浸式交互需求。腾讯团队推出的AniPortrait框架,通过双阶段技术架构实现了从静态图像到动态肖像的质的飞跃。该框架由Audio2Lmk和Lmk2Video两大模块构成,形成完整的音频驱动动画生成闭环。1.音频到关键点的智能解析Audio2Lmk模块采用预训练的Wav2Vec2.0提取音频特征,通过两层全连接网络将语音信号转
- 多模态核心实现技术
charles666666
自然语言处理神经网络人工智能机器学习语言模型
一、模态表示(ModalRepresentation)模态表示是将不同模态数据(文本、图像、音频等)编码为计算机可处理的向量形式的核心步骤。1.单模态编码技术文本表示:采用词嵌入模型(如Word2Vec、GloVe)或预训练语言模型(如BERT、RoBERTa),通过Transformer层提取上下文特征,生成动态词向量。高阶表示:通过句向量模型(如Sentence-BERT)将整段文本映射为固定
- Rust 学习笔记:关于共享状态并发的练习题
UestcXiye
RustRust
Rust学习笔记:关于共享状态并发的练习题Rust学习笔记:关于共享状态并发的练习题问题一问题二Rust学习笔记:关于共享状态并发的练习题参考视频:https://www.bilibili.com/video/BV15ZovYgE1r问题一在某些并发API中,互斥锁和它保护的数据是分开的。例如:letmutdata=Vec::new();letmx:Mutex=Mutex::new();{let_
- (LeetCode 动态规划(基础版))96. 不同的二叉搜索树 (递推 || 递归)
题目:96.不同的二叉搜索树思路:二叉树长度为n时,枚举每个点u作为根节点root,那么root左边的数构成左子树种数left,root右边的数构成右子树种数right,那么当前u为根节点下,二叉树的种数为left*right。答案便是总和,时间复杂度0(n^2)。方法一:递推,时间复杂度0(n^2)。C++版本:classSolution{public:intnumTrees(intn){vec
- 自然语言处理之语言模型:Word2Vec:Word2Vec模型的训练与优化
自然语言处理之语言模型:Word2Vec:Word2Vec模型的训练与优化自然语言处理基础文本预处理文本预处理是自然语言处理(NLP)中至关重要的第一步,它包括多个子步骤,旨在将原始文本转换为适合机器学习模型的格式。以下是一些常见的文本预处理技术:分词(Tokenization):将文本分割成单词或短语。例如,将句子“我喜欢自然语言处理”分割为“我”,“喜欢”,“自然语言处理”。转换为小写(Low
- 基于 GQA 与 MoE 的古诗词生成模型优化 llm项目以及对应八股
许愿与你永世安宁
自用大模型八股rnnnlpberttransformer人工智能深度学习word2vec
目录项目项目背景个人贡献成果产出词嵌入Word2Vec两种训练方式:两种加速训练的方法:GloVe(GlobalVectorsforWordRepresentation)FastTextMHA、GQA、MLApromptengineering位置编码正余弦编码(三角式)可学习位置编码(训练式)经典相对位置编码T5相对位置编码RotaryPositionEmbedding(RoPE)attentio
- Python自然语言处理库之gensim使用详解
Rocky006
python开发语言
概要Gensim是一个专门用于无监督主题建模和自然语言处理的Python开源库,由捷克共和国的RadimŘehůřek开发。该库专注于处理大规模文本数据,提供了多种经典的主题建模算法,如LDA(潜在狄利克雷分配)、LSI(潜在语义索引)等,以及现代化的词向量模型Word2Vec、Doc2Vec、FastText等。Gensim的设计理念是"为人类而非机器",强调易用性和可扩展性,特别适合处理无标签
- OpenCV中的at()函数-像素值读写
Wildcraner
opencv
at()函数是对像素点进行操作。在OpenCV采用at()函数对像素进行遍历。一、单通道图像对于单通道图像"picture",picture.at(i,j)就表示在第i行第j列的像素值。即读取了位于(i,j)的像素值二、多通道图像对于多通道图像如RGB图像"picture",可以用picture.at(i,j)[c]来表示某个通道中在(i,j)位置的像素值。1)上面的doubler、Vec3b表示
- LLM2Vec:开启大型语言模型的文本编码新纪元
殷巧或
LLM2Vec:开启大型语言模型的文本编码新纪元项目地址:https://gitcode.com/gh_mirrors/ll/llm2vec在当今的AI领域,如何高效利用大型语言模型(LLMs)进行文本表示,已成为一个炙手可热的话题。今天,我们向您隆重介绍——LLM2Vec,一项革命性的技术,它将解码器独有的LLMs转化为强大且灵活的文本编码器。项目介绍LLM2Vec是一个简洁而强大的方案,通过三
- C++ STL:六大组件全解析
Shelby-Lee
C++知识点专栏c++开发语言
容器:数据的收纳盒容器是STL中用于存储数据的数据结构,就像是一个个不同功能的收纳盒,方便我们管理和组织数据。根据其特性和用途,容器主要分为序列容器(SequenceContainers)、关联容器(AssociativeContainers)和容器适配器(ContainerAdapters)。序列容器序列容器中的元素按顺序存储,每个元素都有特定的位置,可以通过位置访问元素。常见的序列容器有vec
- 深度学习中的负采样
洪小帅
深度学习人工智能
深度学习中的负采样负采样(NegativeSampling)是一种在训练大型分类或概率模型(尤其是在输出类别很多时)中,用来加速训练、降低计算量的方法。它常用于:词向量训练(如Word2Vec)推荐系统(从大量候选项中学正例与负例)语言模型、对比学习、信息检索等场景本质概念在许多任务中,我们的模型要从上万个候选中预测正确类别。例如:给定单词“cat”,预测它上下文中出现的词(如Word2Vec的S
- 安装数据库首次应用
Array_06
javaoraclesql
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
- Weblogic Server Console密码修改和遗忘解决方法
bijian1013
Welogic
在工作中一同事将Weblogic的console的密码忘记了,通过网上查询资料解决,实践整理了一下。
一.修改Console密码
打开weblogic控制台,安全领域 --> myrealm -->&n
- IllegalStateException: Cannot forward a response that is already committed
Cwind
javaServlets
对于初学者来说,一个常见的误解是:当调用 forward() 或者 sendRedirect() 时控制流将会自动跳出原函数。标题所示错误通常是基于此误解而引起的。 示例代码:
protected void doPost() {
if (someCondition) {
sendRedirect();
}
forward(); // Thi
- 基于流的装饰设计模式
木zi_鸣
设计模式
当想要对已有类的对象进行功能增强时,可以定义一个类,将已有对象传入,基于已有的功能,并提供加强功能。
自定义的类成为装饰类
模仿BufferedReader,对Reader进行包装,体现装饰设计模式
装饰类通常会通过构造方法接受被装饰的对象,并基于被装饰的对象功能,提供更强的功能。
装饰模式比继承灵活,避免继承臃肿,降低了类与类之间的关系
装饰类因为增强已有对象,具备的功能该
- Linux中的uniq命令
被触发
linux
Linux命令uniq的作用是过滤重复部分显示文件内容,这个命令读取输入文件,并比较相邻的行。在正常情 况下,第二个及以后更多个重复行将被删去,行比较是根据所用字符集的排序序列进行的。该命令加工后的结果写到输出文件中。输入文件和输出文件必须不同。如 果输入文件用“- ”表示,则从标准输入读取。
AD:
uniq [选项] 文件
说明:这个命令读取输入文件,并比较相邻的行。在正常情况下,第二个
- 正则表达式Pattern
肆无忌惮_
Pattern
正则表达式是符合一定规则的表达式,用来专门操作字符串,对字符创进行匹配,切割,替换,获取。
例如,我们需要对QQ号码格式进行检验
规则是长度6~12位 不能0开头 只能是数字,我们可以一位一位进行比较,利用parseLong进行判断,或者是用正则表达式来匹配[1-9][0-9]{4,14} 或者 [1-9]\d{4,14}
&nbs
- Oracle高级查询之OVER (PARTITION BY ..)
知了ing
oraclesql
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
- Python调试
矮蛋蛋
pythonpdb
原文地址:
http://blog.csdn.net/xuyuefei1988/article/details/19399137
1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:
IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:
http://www.ibm.com/d
- webservice传递自定义对象时函数为空,以及boolean不对应的问题
alleni123
webservice
今天在客户端调用方法
NodeStatus status=iservice.getNodeStatus().
结果NodeStatus的属性都是null。
进行debug之后,发现服务器端返回的确实是有值的对象。
后来发现原来是因为在客户端,NodeStatus的setter全部被我删除了。
本来是因为逻辑上不需要在客户端使用setter, 结果改了之后竟然不能获取带属性值的
- java如何干掉指针,又如何巧妙的通过引用来操作指针————>说的就是java指针
百合不是茶
C语言的强大在于可以直接操作指针的地址,通过改变指针的地址指向来达到更改地址的目的,又是由于c语言的指针过于强大,初学者很难掌握, java的出现解决了c,c++中指针的问题 java将指针封装在底层,开发人员是不能够去操作指针的地址,但是可以通过引用来间接的操作:
定义一个指针p来指向a的地址(&是地址符号):
- Eclipse打不开,提示“An error has occurred.See the log file ***/.log”
bijian1013
eclipse
打开eclipse工作目录的\.metadata\.log文件,发现如下错误:
!ENTRY org.eclipse.osgi 4 0 2012-09-10 09:28:57.139
!MESSAGE Application error
!STACK 1
java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContai
- spring aop实例annotation方法实现
bijian1013
javaspringAOPannotation
在spring aop实例中我们通过配置xml文件来实现AOP,这里学习使用annotation来实现,使用annotation其实就是指明具体的aspect,pointcut和advice。1.申明一个切面(用一个类来实现)在这个切面里,包括了advice和pointcut
AdviceMethods.jav
- [Velocity一]Velocity语法基础入门
bit1129
velocity
用户和开发人员参考文档
http://velocity.apache.org/engine/releases/velocity-1.7/developer-guide.html
注释
1.行级注释##
2.多行注释#* *#
变量定义
使用$开头的字符串是变量定义,例如$var1, $var2,
赋值
使用#set为变量赋值,例
- 【Kafka十一】关于Kafka的副本管理
bit1129
kafka
1. 关于request.required.acks
request.required.acks控制者Producer写请求的什么时候可以确认写成功,默认是0,
0表示即不进行确认即返回。
1表示Leader写成功即返回,此时还没有进行写数据同步到其它Follower Partition中
-1表示根据指定的最少Partition确认后才返回,这个在
Th
- lua统计nginx内部变量数据
ronin47
lua nginx 统计
server {
listen 80;
server_name photo.domain.com;
location /{set $str $uri;
content_by_lua '
local url = ngx.var.uri
local res = ngx.location.capture(
- java-11.二叉树中节点的最大距离
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class MaxLenInBinTree {
/*
a. 1
/ \
2 3
/ \ / \
4 5 6 7
max=4 pass "root"
- Netty源码学习-ReadTimeoutHandler
bylijinnan
javanetty
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
- jquery验证上传文件样式及大小(好用)
cngolon
文件上传jquery验证
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery1.8/jquery-1.8.0.
- 浏览器兼容【转】
cuishikuan
css浏览器IE
浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同
问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大。
碰到频率:100%
解决方案:CSS里 *{margin:0;padding:0;}
备注:这个是最常见的也是最易解决的一个浏览器兼容性问题,几乎所有的CSS文件开头都会用通配符*来设
- Shell特殊变量:Shell $0, $#, $*, $@, $?, $$和命令行参数
daizj
shell$#$?特殊变量
前面已经讲到,变量名只能包含数字、字母和下划线,因为某些包含其他字符的变量有特殊含义,这样的变量被称为特殊变量。例如,$ 表示当前Shell进程的ID,即pid,看下面的代码:
$echo $$
运行结果
29949
特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数。n 是一个数字,表示第几个参数。例如,第一个
- 程序设计KISS 原则-------KEEP IT SIMPLE, STUPID!
dcj3sjt126com
unix
翻到一本书,讲到编程一般原则是kiss:Keep It Simple, Stupid.对这个原则深有体会,其实不仅编程如此,而且系统架构也是如此。
KEEP IT SIMPLE, STUPID! 编写只做一件事情,并且要做好的程序;编写可以在一起工作的程序,编写处理文本流的程序,因为这是通用的接口。这就是UNIX哲学.所有的哲学真 正的浓缩为一个铁一样的定律,高明的工程师的神圣的“KISS 原
- android Activity间List传值
dcj3sjt126com
Activity
第一个Activity:
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import android.app.Activity;import android.content.Intent;import android.os.Bundle;import a
- tomcat 设置java虚拟机内存
eksliang
tomcat 内存设置
转载请出自出处:http://eksliang.iteye.com/blog/2117772
http://eksliang.iteye.com/
常见的内存溢出有以下两种:
java.lang.OutOfMemoryError: PermGen space
java.lang.OutOfMemoryError: Java heap space
------------
- Android 数据库事务处理
gqdy365
android
使用SQLiteDatabase的beginTransaction()方法可以开启一个事务,程序执行到endTransaction() 方法时会检查事务的标志是否为成功,如果程序执行到endTransaction()之前调用了setTransactionSuccessful() 方法设置事务的标志为成功则提交事务,如果没有调用setTransactionSuccessful() 方法则回滚事务。事
- Java 打开浏览器
hw1287789687
打开网址open浏览器open browser打开url打开浏览器
使用java 语言如何打开浏览器呢?
我们先研究下在cmd窗口中,如何打开网址
使用IE 打开
D:\software\bin>cmd /c start iexplore http://hw1287789687.iteye.com/blog/2153709
使用火狐打开
D:\software\bin>cmd /c start firefox http://hw1287789
- ReplaceGoogleCDN:将 Google CDN 替换为国内的 Chrome 插件
justjavac
chromeGooglegoogle apichrome插件
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
- 进程VS.线程
m635674608
线程
资料来源:
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001397567993007df355a3394da48f0bf14960f0c78753f000 1、Apache最早就是采用多进程模式 2、IIS服务器默认采用多线程模式 3、多进程优缺点 优点:
多进程模式最大
- Linux下安装MemCached
字符串
memcached
前提准备:1. MemCached目前最新版本为:1.4.22,可以从官网下载到。2. MemCached依赖libevent,因此在安装MemCached之前需要先安装libevent。2.1 运行下面命令,查看系统是否已安装libevent。[root@SecurityCheck ~]# rpm -qa|grep libevent libevent-headers-1.4.13-4.el6.n
- java设计模式之--jdk动态代理(实现aop编程)
Supanccy2013
javaDAO设计模式AOP
与静态代理类对照的是动态代理类,动态代理类的字节码在程序运行时由Java反射机制动态生成,无需程序员手工编写它的源代码。动态代理类不仅简化了编程工作,而且提高了软件系统的可扩展性,因为Java 反射机制可以生成任意类型的动态代理类。java.lang.reflect 包中的Proxy类和InvocationHandler 接口提供了生成动态代理类的能力。
&
- Spring 4.2新特性-对java8默认方法(default method)定义Bean的支持
wiselyman
spring 4
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {
暂无评论