功能很简单,大致流程为:
1) MediaCodec 解码视频文件得到 YUV、PCM 数据
2) OpenGL 将 YUV 转为 RGB,并渲染到 Surface 上
3) OpenSL/AudoTrack 获取 PCM 数据并播放
需要的前置知识有:
1) YUV、PCM 等基础音视频知识,如 YUV 转 RGB
2) MediaCodec 的使用
3) OpenGL,包括 EGL、纹理等
4) OpenSL 或 AudioTrack 的使用
之前写过相关的博客 MediaCodec 实现硬件解码,大致流程和普通的解码类似,在编写视频播放器这个功能时,需要注意的地方有两个:
1) 监听解码流程
public interface OnDecodeListener {
void onImageDecoded(byte[] data);
void onSampleDecoded(byte[] data);
void onDecodeEnded();
}
也可以加一个 onDecodeError() 的接口,看需要扩展即可。
2) 播放和解码同步
因为视频数据量很大,不可能把解码后的 YUV 数据保存在一个队列里,再慢慢拿出来使用 OpenGL 渲染(很容易就 OOM 了),因此,必须控制解码的速率,最简单的控制方式是和播放同步,如下所示:
ByteBuffer outputBuffer = outputBuffers[outIndex];
outputBuffer.position(bufferInfo.offset);
outputBuffer.limit(bufferInfo.offset + bufferInfo.size);
byte[] data = new byte[bufferInfo.size];
outputBuffer.get(data);
if (mIsDecodeWithPts) {
if (startTime == 0) {
startTime = System.nanoTime();
} else {
passTime = (System.nanoTime() - startTime) / 1000;
if (passTime < bufferInfo.presentationTimeUs) {
TimeUnit.MICROSECONDS.sleep(bufferInfo.presentationTimeUs - passTime);
}
}
}
if (mediaType == HWCodec.MEDIA_TYPE_VIDEO && listener != null) {
listener.onImageDecoded(data);
} else if (listener != null) {
listener.onSampleDecoded(data);
}
和渲染纹理的流程类似,不同的地方在于需要转换 YUV 数据为 RGB,而 YUV 数据又有 YUV420P、YUV420SP 等多种格式,因此在转换 RGB 之前,需要统一 YUV 数据的格式,这里使用的是 YUV420P。
YUV 数据格式之间的转换可以自己写,比如 YUV420SP 转换为 YUV420P,只需要把最后的 U、V 数据分别逐个放入到一个数组里即可,但考虑到视频裁剪、旋转,以及之后可能用到的各种 YUV 数据处理功能,因此这里引入了一个 libyuv 的库,使用非常简单:
Yuv* convertToI420(AVModel *model) {
if (!model || model->imageLen <= 0 || model->flag != MODEL_FLAG_VIDEO || model->width <= 0
|| model->height <= 0 || model->pixelFormat <= 0 || !model->image) {
LOGE("convertToARGB failed: invalid argument");
return nullptr;
}
Yuv *yuv = new Yuv(model->width, model->height);
ConvertToI420(model->image, (size_t) model->imageLen, yuv->bufY, yuv->strideY,
yuv->bufU, yuv->strideU, yuv->bufV, yuv->strideV,
0, 0, model->width, model->height, model->width, model->height,
kRotate0, getFourCC(model->pixelFormat));
return yuv;
}
AVModel、Yuv 是我自定义的两个类,分别用于保存音视频数据及相关信息、YUV 数据及相关信息,源码可见 GitHub。
YUV 转 RGB 的相关系数在 音视频开发基础概述 - PCM、YUV、H264、常用软件介绍 介绍过,可以在 fragment shader 完成:
#version 300 es
precision highp float;
uniform sampler2D yTexture;
uniform sampler2D uTexture;
uniform sampler2D vTexture;
in vec2 vTexCoord;
layout(location=0) out vec4 fragColor;
void main() {
highp float y = texture(yTexture, vTexCoord).r;
highp float u = texture(uTexture, vTexCoord).r - 0.5;
highp float v = texture(vTexture, vTexCoord).r - 0.5;
highp float r = y + 1.402 * v;
highp float g = y - 0.344 * u - 0.714 * v;
highp float b = y + 1.772 * u;
fragColor = vec4(r, g, b, 1.0);
}
OpenGL 关键代码如下:
bool YuvRenderer::doInit() {
std::string *vShader = readShaderFromAsset(mAssetManager, "yuv_renderer.vert");
std::string *fShader = readShaderFromAsset(mAssetManager, "yuv_renderer.frag");
mProgram = loadProgram(vShader->c_str(), fShader->c_str());
mMatrixLoc = glGetUniformLocation(mProgram, "mMatrix");
mSamplerY = glGetUniformLocation(mProgram, "yTexture");
mSamplerU = glGetUniformLocation(mProgram, "uTexture");
mSamplerV = glGetUniformLocation(mProgram, "vTexture");
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
// 生成三个纹理,分别用于装载 Y、U、V 数据
glGenTextures(3, mTextures);
glBindTexture(GL_TEXTURE_2D, mTextures[0]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, mTexWidth, mTexHeight, 0, GL_LUMINANCE,
GL_UNSIGNED_BYTE, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glBindTexture(GL_TEXTURE_2D, mTextures[1]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, mTexWidth / 2, mTexHeight / 2, 0, GL_LUMINANCE,
GL_UNSIGNED_BYTE, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glBindTexture(GL_TEXTURE_2D, mTextures[2]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, mTexWidth / 2, mTexHeight / 2, 0, GL_LUMINANCE,
GL_UNSIGNED_BYTE, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// 缓存顶点坐标、纹理坐标、索引数据到 VBO 中
glGenBuffers(3, mVboIds);
glBindBuffer(GL_ARRAY_BUFFER, mVboIds[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(VERTICES), VERTICES, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, mVboIds[1]);
glBufferData(GL_ARRAY_BUFFER, sizeof(TEX_COORDS), TEX_COORDS, GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mVboIds[2]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(INDICES), INDICES, GL_STATIC_DRAW);
// 缓存 VBO 到 VAO 中
glGenVertexArrays(1, &mVaoId);
glBindVertexArray(mVaoId);
glBindBuffer(GL_ARRAY_BUFFER, mVboIds[0]);
glEnableVertexAttribArray(ATTRIB_POSITION);
glVertexAttribPointer(ATTRIB_POSITION, VERTEX_POS_SIZE, GL_FLOAT, GL_FALSE,
sizeof(GLfloat) * VERTEX_POS_SIZE, 0);
glBindBuffer(GL_ARRAY_BUFFER, mVboIds[1]);
glEnableVertexAttribArray(ATTRIB_TEX_COORD);
glVertexAttribPointer(ATTRIB_TEX_COORD, TEX_COORD_SIZE, GL_FLOAT, GL_FALSE,
sizeof(GLfloat) * TEX_COORD_SIZE, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mVboIds[2]);
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
delete vShader;
delete fShader;
return true;
}
void YuvRenderer::doDraw() {
glViewport(0, 0, mWidth, mHeight);
glClear(GL_COLOR_BUFFER_BIT);
glUseProgram(mProgram);
glUniformMatrix4fv(mMatrixLoc, 1, GL_FALSE, mMatrix);
if (!mYuv) {
LOGW("YuvRenderer doDraw failed: yuv data have not assigned");
return;
}
// 分别载入 Y、U、V 数据到对应的纹理中
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, mTextures[0]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, mTexWidth, mTexHeight, 0, GL_LUMINANCE,
GL_UNSIGNED_BYTE, mYuv->bufY);
glUniform1i(mSamplerY, 0);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, mTextures[1]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, mTexWidth / 2, mTexHeight / 2, 0, GL_LUMINANCE,
GL_UNSIGNED_BYTE, mYuv->bufU);
glUniform1i(mSamplerU, 1);
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, mTextures[2]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, mTexWidth / 2, mTexHeight / 2, 0, GL_LUMINANCE,
GL_UNSIGNED_BYTE, mYuv->bufV);
glUniform1i(mSamplerV, 2);
// 使用 VAO 缓存的数据绘制图像
glBindVertexArray(mVaoId);
glDrawElements(GL_TRIANGLES, INDEX_NUMBER, GL_UNSIGNED_SHORT, 0);
glBindVertexArray(0);
glBindTexture(GL_TEXTURE_2D, 0);
}
初始化播放器:
bool BQAudioPlayer::init() {
SLresult result;
SLDataLocator_AndroidSimpleBufferQueue locBufq = {SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE, 2};
// channelMask: 位数和 channel 相等,0 代表 SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT
SLDataFormat_PCM formatPcm = {SL_DATAFORMAT_PCM, (SLuint32) mChannels, mSampleRate,
(SLuint32) mSampleFormat, (SLuint32) mSampleFormat,
mChannels == 2 ? 0 : SL_SPEAKER_FRONT_CENTER,
SL_BYTEORDER_LITTLEENDIAN};
if (mSampleRate) {
formatPcm.samplesPerSec = mSampleRate;
}
SLDataSource audioSrc = {&locBufq, &formatPcm};
SLDataLocator_OutputMix locOutpuMix = {SL_DATALOCATOR_OUTPUTMIX, mAudioEngine->outputMixObj};
SLDataSink audioSink = {&locOutpuMix, nullptr};
const SLInterfaceID ids[3] = {SL_IID_BUFFERQUEUE, SL_IID_VOLUME, SL_IID_EFFECTSEND};
const SLboolean req[3] = {SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE};
result = (*mAudioEngine->engine)->CreateAudioPlayer(mAudioEngine->engine, &mPlayerObj,
&audioSrc, &audioSink,
mSampleRate ? 2 : 3, ids, req);
if (result != SL_RESULT_SUCCESS) {
LOGE("CreateAudioPlayer failed: %d", result);
return false;
}
result = (*mPlayerObj)->Realize(mPlayerObj, SL_BOOLEAN_FALSE);
if (result != SL_RESULT_SUCCESS) {
LOGE("mPlayerObj Realize failed: %d", result);
return false;
}
result = (*mPlayerObj)->GetInterface(mPlayerObj, SL_IID_PLAY, &mPlayer);
if (result != SL_RESULT_SUCCESS) {
LOGE("mPlayerObj GetInterface failed: %d", result);
return false;
}
result = (*mPlayerObj)->GetInterface(mPlayerObj, SL_IID_BUFFERQUEUE, &mBufferQueue);
if (result != SL_RESULT_SUCCESS) {
LOGE("mPlayerObj GetInterface failed: %d", result);
return false;
}
result = (*mBufferQueue)->RegisterCallback(mBufferQueue, playerCallback, this);
if (result != SL_RESULT_SUCCESS) {
LOGE("mPlayerObj RegisterCallback failed: %d", result);
return false;
}
mEffectSend = nullptr;
if (mSampleRate == 0) {
result = (*mPlayerObj)->GetInterface(mPlayerObj, SL_IID_EFFECTSEND, &mEffectSend);
if (result != SL_RESULT_SUCCESS) {
LOGE("mPlayerObj GetInterface failed: %d", result);
return false;
}
}
result = (*mPlayerObj)->GetInterface(mPlayerObj, SL_IID_VOLUME, &mVolume);
if (result != SL_RESULT_SUCCESS) {
LOGE("mPlayerObj GetInterface failed: %d", result);
return false;
}
result = (*mPlayer)->SetPlayState(mPlayer, SL_PLAYSTATE_PLAYING);
if (result != SL_RESULT_SUCCESS) {
LOGE("mPlayerObj SetPlayState failed: %d", result);
return false;
}
return true;
}
之后只需要把 PCM 入队即可:
// 一帧音频播放完毕后就会回调这个函数
void playerCallback(SLAndroidSimpleBufferQueueItf bq, void *context) {
BQAudioPlayer *player = (BQAudioPlayer *) context;
assert(bq == player->mBufferQueue);
pthread_mutex_unlock(&player->mMutex);
}
void BQAudioPlayer::enqueueSample(void *data, size_t length) {
// 必须等待一帧音频播放完毕后才可以 Enqueue 第二帧音频
pthread_mutex_lock(&mMutex);
if (mBufSize < length) {
mBufSize = length;
if (mBuffers[0]) {
delete[] mBuffers[0];
}
if (mBuffers[1]) {
delete[] mBuffers[1];
}
mBuffers[0] = new uint8_t[mBufSize];
mBuffers[1] = new uint8_t[mBufSize];
}
memcpy(mBuffers[mIndex], data, length);
(*mBufferQueue)->Enqueue(mBufferQueue, mBuffers[mIndex], length);
mIndex = 1 - mIndex;
}
结束播放:
void BQAudioPlayer::release() {
pthread_mutex_lock(&mMutex);
if (mPlayerObj) {
(*mPlayerObj)->Destroy(mPlayerObj);
mPlayerObj = nullptr;
mPlayer = nullptr;
mBufferQueue = nullptr;
mEffectSend = nullptr;
mVolume = nullptr;
}
if (mAudioEngine) {
delete mAudioEngine;
mAudioEngine = nullptr;
}
if (mBuffers[0]) {
delete[] mBuffers[0];
mBuffers[0] = nullptr;
}
if (mBuffers[1]) {
delete[] mBuffers[1];
mBuffers[1] = nullptr;
}
pthread_mutex_unlock(&mMutex);
pthread_mutex_destroy(&mMutex);
}
相对 OpenSL,AudioTrack 代码量少很多,设置 AudioTrack:
private void setupAudioTrack() {
int channelConfig = mChannels == 1 ? AudioFormat.CHANNEL_OUT_MONO : AudioFormat.CHANNEL_OUT_STEREO;
// 获取 sample format 的 API 要求高,这里默认使用 ENCODING_PCM_16BIT
int bufferSize = AudioTrack.getMinBufferSize(mSampleRate, channelConfig, AudioFormat.ENCODING_PCM_16BIT);
mAudioTrack = new AudioTrack(AudioManager.STREAM_MUSIC, mSampleRate, channelConfig,
AudioFormat.ENCODING_PCM_16BIT, bufferSize, AudioTrack.MODE_STREAM);
}
播放 PCM 数据:
@Override
public void onSampleDecoded(byte[] data) {
if (mIsPlaying) {
mAudioTrack.write(data, 0, data.length);
mAudioTrack.play();
}
}
结束播放:
private void releaseAudioTrack() {
if (mAudioTrack != null) {
mAudioTrack.stop();
mAudioTrack.release();
mAudioTrack = null;
}
}
以上,一款简单的视频播放器就完成了,如果觉得哪些代码写得不够好,请留言交流一下,谢谢。
源码已上传到 GitHub。