Python实现多项式计算的四种方法

问题描述

分别实现多项式求值的四种运算,若针对不同规模的输入值 a ,各算法的运行时间,问题规模 n 分别取10,50,100,150,200,300,400,500,10000,20000,50000,100000时绘制四种算法运行时间的比较图。

解题方法

需要用四种不同的方法实现对多项式的求值,这里采用的是直接代入以及三种不同的递归算法。三种不同的递归思想分别为:
1)Pn(x)=Pn1(x)+anxn
2)P=a0,Q=1,Q=Qx,P=P+aiQ
3)Pi(x)=Pi1(x)x+ani

具体代码

import numpy as np
import time
import math
import random
# root = np.array([1, 2, 1])
# p = np.poly1d(root)
# r = np.roots(p)
# print(r)
n = [10,50,100,150,200,300,400,500]
x = 1.2 #将多项式中x的值设为1.2
Sum_time1 = []
Sum_time2 = []
Sum_time3 = []
Sum_time4 = []
for ele in n:
    a =  np.random.random(ele)
    p = np.poly1d(a)
    time_start = time.time()
    temp = np.polyval(p, x)
    time_end = time.time()
    Sum_time1.append(time_end - time_start)

    temp = float('Inf')
    time_start = time.time()
    for i in range(0, ele, 1):
        temp = temp + a[i] * x**i
    time_end = time.time()
    Sum_time2.append(time_end - time_start)

   # temp = int()
    time_start = time.time()
    q = 1
    for i in range(0, ele, 1):
        q = q * x
        temp = temp + a[i] * q
    time_end = time.time()
    Sum_time3.append(time_end - time_start)

    #temp = int()
    time_start = time.time()
    for i in range(0, ele, 1):
        temp = temp * x + a[ele - i - 1]
    time_end = time.time()
    Sum_time4.append(time_end - time_start)
print(Sum_time1)
print(Sum_time2)
print(Sum_time3)
print(Sum_time4)

你可能感兴趣的:(Python基础学习,python,多项式计算)