java-Atomic并发包

Atomic 操作简单介绍

Java从JDK1.5开始提供了java.util.concurrent.atomic包,方便程序员在多线程环境下,无锁的进行原子操作。学习并发编程的时候,也借机去了解了一下Atomic包的内容。本文不太深入去解释各个类的作用,因为大部分都是差不多的,主要以AtomicInteger作为示例。
包路径java.util.concurrent.atomic
java-Atomic并发包_第1张图片
在并发的状态下,如果有多个线程都对一个同一个变量进行操作,有一些操作会被覆盖,从而使得我们得到不正确的结果,这里将会以一个整形静态数值累计增加10w次,并分别用两个线程来调用,观察结果。

并发下错误的结果

public class InnerAdd implements Runnable{
     

    static int val = 0;

    @Override
    public void run() {
     
        for (int i = 0; i < 100000 ; i++){
     
            val++;
        }
    }

    public void printAiVal(){
     
        System.out.println(val);
    }
}
    public static void main(String[] args) throws InterruptedException {
     
        InnerAdd ina = new InnerAdd();

        // 线程t1
        Thread t1 = new Thread(ina);
        // 线程t2
        Thread t2 = new Thread(ina);
        // t1 和 t2 都进入到start状态,等待cpu调用
        t1.start();
        t2.start();
        // 等待t1和t2都执行完毕
        t1.join();
        t2.join();
        // 调用打印获取最后的结果
        ina.printAiVal();
    }

多次运行代码,始终得不到结果为20w的样本。大都在10-15w之间浮动(可见问题之大)

使用AtomicInteger进行操作

我们对InnerAdd进行部分修改,使得他使用atomic包提供的atomicInteger类里面的方法进行并发下,多个线程对同一个数值进行操作。

public class InnerAdd implements Runnable{
     

    static AtomicInteger ai = new AtomicInteger(0);

    @Override
    public void run() {
     
        for (int i = 0; i < 100000 ; i++){
     
            ai.incrementAndGet(); // 等价++1
        }
    }

    public void printAiVal(){
     
        System.out.println(ai.get());
    }
}

经过反复的运行,始终能得到正确结果20w,同时我们也去看一看这类提供了什么方法

public class AtomicInteger extends Number implements java.io.Serializable {
     
    private static final long serialVersionUID = 6214790243416807050L;

    // setup to use Unsafe.compareAndSwapInt for updates
    private static final Unsafe unsafe = Unsafe.getUnsafe();
    private static final long valueOffset;

    static {
     
        try {
     
            valueOffset = unsafe.objectFieldOffset
                (AtomicInteger.class.getDeclaredField("value"));
        } catch (Exception ex) {
      throw new Error(ex); }
    }

    private volatile int value;

    /**
     * Creates a new AtomicInteger with the given initial value.
     *
     * @param initialValue the initial value
     */
    public AtomicInteger(int initialValue) {
     
        value = initialValue;
    }

    /**
     * Creates a new AtomicInteger with initial value {@code 0}.
     */
    public AtomicInteger() {
     
    }

    /**
     * Gets the current value.
     *
     * @return the current value
     */
    public final int get() {
     
        return value;
    }

    /**
     * Sets to the given value.
     *
     * @param newValue the new value
     */
    public final void set(int newValue) {
     
        value = newValue;
    }

    /**
     * Eventually sets to the given value.
     *
     * @param newValue the new value
     * @since 1.6
     */
    public final void lazySet(int newValue) {
     
        unsafe.putOrderedInt(this, valueOffset, newValue);
    }

    /**
     * Atomically sets to the given value and returns the old value.
     *
     * @param newValue the new value
     * @return the previous value
     */
    public final int getAndSet(int newValue) {
     
        return unsafe.getAndSetInt(this, valueOffset, newValue);
    }

    /**
     * Atomically sets the value to the given updated value
     * if the current value {@code ==} the expected value.
     *
     * @param expect the expected value
     * @param update the new value
     * @return {@code true} if successful. False return indicates that
     * the actual value was not equal to the expected value.
     */
    public final boolean compareAndSet(int expect, int update) {
     
        return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }

    /**
     * Atomically sets the value to the given updated value
     * if the current value {@code ==} the expected value.
     *
     * 

May fail * spuriously and does not provide ordering guarantees, so is * only rarely an appropriate alternative to {@code compareAndSet}. * * @param expect the expected value * @param update the new value * @return {@code true} if successful */ public final boolean weakCompareAndSet(int expect, int update) { return unsafe.compareAndSwapInt(this, valueOffset, expect, update); } /** * Atomically increments by one the current value. * * @return the previous value */ public final int getAndIncrement() { return unsafe.getAndAddInt(this, valueOffset, 1); } /** * Atomically decrements by one the current value. * * @return the previous value */ public final int getAndDecrement() { return unsafe.getAndAddInt(this, valueOffset, -1); } /** * Atomically adds the given value to the current value. * * @param delta the value to add * @return the previous value */ public final int getAndAdd(int delta) { return unsafe.getAndAddInt(this, valueOffset, delta); } /** * Atomically increments by one the current value. * * @return the updated value */ public final int incrementAndGet() { return unsafe.getAndAddInt(this, valueOffset, 1) + 1; } /** * Atomically decrements by one the current value. * * @return the updated value */ public final int decrementAndGet() { return unsafe.getAndAddInt(this, valueOffset, -1) - 1; } /** * Atomically adds the given value to the current value. * * @param delta the value to add * @return the updated value */ public final int addAndGet(int delta) { return unsafe.getAndAddInt(this, valueOffset, delta) + delta; } /** * Atomically updates the current value with the results of * applying the given function, returning the previous value. The * function should be side-effect-free, since it may be re-applied * when attempted updates fail due to contention among threads. * * @param updateFunction a side-effect-free function * @return the previous value * @since 1.8 */ public final int getAndUpdate(IntUnaryOperator updateFunction) { int prev, next; do { prev = get(); next = updateFunction.applyAsInt(prev); } while (!compareAndSet(prev, next)); return prev; } /** * Atomically updates the current value with the results of * applying the given function, returning the updated value. The * function should be side-effect-free, since it may be re-applied * when attempted updates fail due to contention among threads. * * @param updateFunction a side-effect-free function * @return the updated value * @since 1.8 */ public final int updateAndGet(IntUnaryOperator updateFunction) { int prev, next; do { prev = get(); next = updateFunction.applyAsInt(prev); } while (!compareAndSet(prev, next)); return next; } /** * Atomically updates the current value with the results of * applying the given function to the current and given values, * returning the previous value. The function should be * side-effect-free, since it may be re-applied when attempted * updates fail due to contention among threads. The function * is applied with the current value as its first argument, * and the given update as the second argument. * * @param x the update value * @param accumulatorFunction a side-effect-free function of two arguments * @return the previous value * @since 1.8 */ public final int getAndAccumulate(int x, IntBinaryOperator accumulatorFunction) { int prev, next; do { prev = get(); next = accumulatorFunction.applyAsInt(prev, x); } while (!compareAndSet(prev, next)); return prev; } /** * Atomically updates the current value with the results of * applying the given function to the current and given values, * returning the updated value. The function should be * side-effect-free, since it may be re-applied when attempted * updates fail due to contention among threads. The function * is applied with the current value as its first argument, * and the given update as the second argument. * * @param x the update value * @param accumulatorFunction a side-effect-free function of two arguments * @return the updated value * @since 1.8 */ public final int accumulateAndGet(int x, IntBinaryOperator accumulatorFunction) { int prev, next; do { prev = get(); next = accumulatorFunction.applyAsInt(prev, x); } while (!compareAndSet(prev, next)); return next; } /** * Returns the String representation of the current value. * @return the String representation of the current value */ public String toString() { return Integer.toString(get()); } /** * Returns the value of this {@code AtomicInteger} as an {@code int}. */ public int intValue() { return get(); } /** * Returns the value of this {@code AtomicInteger} as a {@code long} * after a widening primitive conversion. * @jls 5.1.2 Widening Primitive Conversions */ public long longValue() { return (long)get(); } /** * Returns the value of this {@code AtomicInteger} as a {@code float} * after a widening primitive conversion. * @jls 5.1.2 Widening Primitive Conversions */ public float floatValue() { return (float)get(); } /** * Returns the value of this {@code AtomicInteger} as a {@code double} * after a widening primitive conversion. * @jls 5.1.2 Widening Primitive Conversions */ public double doubleValue() { return (double)get(); } }

简单介绍AtomicInteger

在这个类中,首先去实现了序列化的接口,同时去获取了一个Unsafe的实例(感兴趣的可以去百度一下这个类,之类只做简单的介绍),先来看看Unsafe做了啥。
java-Atomic并发包_第2张图片
这里去判断虚拟机(JVM)加载了这个类没有,根据判断结果抛出Security异常或者返回一个Unsafe的操作类。 通过Unsafe类,我们可以对内存进行管理,多线程同步,线程的挂起和恢复等各种操作。
由于Unsafe的不少方法中必须提供原始地址(内存地址)和被替换对象的地址,偏移量要自己计算,一旦出现问题就是JVM崩溃级别的异常,会导致整个JVM实例崩溃,表现为应用程序直接crash掉。所以我们自己尽量不要去操作,我们这里用的atomic是官方提供的,所以理论上他们自己封装好了。我们只需要使用方法而不用关系线程同步的细节。

	// 带参数的构造方法
    public AtomicInteger(int initialValue) {
     
        value = initialValue;
    }
    //不带参数的构造方法
    public AtomicInteger() {
     
    }
    // 获取当前变量数值
    public final int get() {
     
        return value;
    }
    // 给变量设置一个值
    public final void set(int newValue) {
     
        value = newValue;
    }
    // lazySet是使用Unsafe.putOrderedObject方法,这个方法在对低延迟代码是很有用的,
    // 它能够实现非堵塞的写入,这些写入不会被Java的JIT重新排序指令
    // lazySet不保证写完之后对其他线程可见
    public final void lazySet(int newValue) {
     
        unsafe.putOrderedInt(this, valueOffset, newValue);
    }
    // 先获取值,再设置一个新的值进去。 (得到旧值的同时赋了一个新的值)
    public final int getAndSet(int newValue) {
     
        return unsafe.getAndSetInt(this, valueOffset, newValue);
    }
	//以原子的方式更新这个更新器所管理的对象(obj)的成员变量,并且将这个成员变量更新为给定的更新后的值(update)如果当前值等于期望值(expect)时。
    // expect - 当前值  update - 期望值 , 成功执行后返回期望值
    public final boolean compareAndSet(int expect, int update) {
     
        return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }
    // weakCompareAndSet底层不会创建任何happen-before的保证, 也就是不会对volatile字段操作的前后加入内存屏障。
    // 因此就无法保证多线程操作下对除了weakCompareAndSet操作的目标变量(该目标变量一定是一个volatile变量)之外其他的变量读取和写入数据的正确性。
    public final boolean weakCompareAndSet(int expect, int update) {
     
        return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }
    // 先获取再增加1,等同i++
    public final int getAndIncrement() {
     
        return unsafe.getAndAddInt(this, valueOffset, 1);
    }
    // 同理 i--
    public final int getAndDecrement() {
     
        return unsafe.getAndAddInt(this, valueOffset, -1);
    }
    // 先获取再增加,自定义累加值
    public final int getAndAdd(int delta) {
     
        return unsafe.getAndAddInt(this, valueOffset, delta);
    }
    // 先增加再获取,自定累加值
    public final int addAndGet(int delta) {
     
        return unsafe.getAndAddInt(this, valueOffset, delta) + delta;
    }
    
    // 先增加再返回 等同++i;
    public final int incrementAndGet() {
     
        return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
    }
    // --i
    public final int decrementAndGet() {
     
        return unsafe.getAndAddInt(this, valueOffset, -1) - 1;
    }
    // 使用应用给定函数的结果自动更新当前值,并返回先前的值
    public final int getAndUpdate(IntUnaryOperator updateFunction) {
     
        int prev, next;
        do {
     
            prev = get();
            next = updateFunction.applyAsInt(prev);
        } while (!compareAndSet(prev, next));
        return prev;
    }
    // 使用应用给定函数的结果自动更新当前值,并当前的值
    public final int updateAndGet(IntUnaryOperator updateFunction) {
     
        int prev, next;
        do {
     
            prev = get();
            next = updateFunction.applyAsInt(prev);
        } while (!compareAndSet(prev, next));
        return next;
    }
    // 使用将给定函数应用于当前值和给定值的结果自动更新当前值,并返回先前的值
    public final int getAndAccumulate(int x,
                                      IntBinaryOperator accumulatorFunction) {
     
        int prev, next;
        do {
     
            prev = get();
            next = accumulatorFunction.applyAsInt(prev, x);
        } while (!compareAndSet(prev, next));
        return prev;
    }
    // 使用将给定函数应用于当前值和给定值的结果自动更新当前值,并返回当前的值
    public final int accumulateAndGet(int x,
                                      IntBinaryOperator accumulatorFunction) {
     
        int prev, next;
        do {
     
            prev = get();
            next = accumulatorFunction.applyAsInt(prev, x);
        } while (!compareAndSet(prev, next));
        return next;
    }

你可能感兴趣的:(java,java)