tf.summary用法

转:https://blog.csdn.net/hongxue8888/article/details/79753679

1、tf.summary.scalar

用来显示标量信息,其格式为:

tf.summary.scalar(name, tensor, collections=None)
  • 1

例如:tf.summary.scalar('mean', mean)

一般在画loss,accuary时会用到这个函数。


2、tf.summary.histogram

用来显示直方图信息,其格式为:

tf.summary.histogram(tags, values, collections=None, name=None) 
  • 1

例如: tf.summary.histogram('histogram', var) 
一般用来显示训练过程中变量的分布情况


3、tf.summary.distribution 
分布图,一般用于显示weights分布


4、tf.summary.text 
可以将文本类型的数据转换为tensor写入summary中:

例如:

text = """/a/b/c\\_d/f\\_g\\_h\\_2017"""
summary_op0 = tf.summary.text('text', tf.convert_to_tensor(text))
  • 1
  • 2

5、tf.summary.image

输出带图像的probuf,汇总数据的图像的的形式如下: ’ tag /image/0’, ’ tag /image/1’…,如:input/image/0等。

格式:tf.summary.image(name, tensor, max_outputs=3, collections=None)


6、tf.summary.audio

展示训练过程中记录的音频


7、tf.summary.merge_all

merge_all 可以将所有summary全部保存到磁盘,以便tensorboard显示。如果没有特殊要求,一般用这一句就可一显示训练时的各种信息了。

格式:tf.summaries.merge_all(key='summaries')


8、tf.summary.FileWriter

指定一个文件用来保存图。

格式:tf.summary.FileWritter(path,sess.graph)

可以调用其add_summary()方法将训练过程数据保存在filewriter指定的文件中

Tensorflow Summary 用法示例:

tf.summary.scalar('accuracy',acc)                   #生成准确率标量图  
merge_summary = tf.summary.merge_all()  
train_writer = tf.summary.FileWriter(dir,sess.graph)#定义一个写入summary的目标文件,dir为写入文件地址  
......(交叉熵、优化器等定义)  
for step in xrange(training_step):                  #训练循环  
    train_summary = sess.run(merge_summary,feed_dict =  {...})#调用sess.run运行图,生成一步的训练过程数据  
    train_writer.add_summary(train_summary,step)#调用train_writer的add_summary方法将训练过程以及训练步数保存  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

此时开启tensorborad:

tensorboard –logdir=/summary_dir 
便能看见accuracy曲线了。

另外,如果我不想保存所有定义的summary信息,也可以用tf.summary.merge方法有选择性地保存信息


9、tf.summary.merge

格式:tf.summary.merge(inputs, collections=None, name=None)

一般选择要保存的信息还需要用到tf.get_collection()函数

示例:

tf.summary.scalar('accuracy',acc)                   #生成准确率标量图  
merge_summary = tf.summary.merge([tf.get_collection(tf.GraphKeys.SUMMARIES,'accuracy'),...(其他要显示的信息)])  
train_writer = tf.summary.FileWriter(dir,sess.graph)#定义一个写入summary的目标文件,dir为写入文件地址  
......(交叉熵、优化器等定义)  
for step in xrange(training_step):                  #训练循环  
    train_summary = sess.run(merge_summary,feed_dict =  {...})#调用sess.run运行图,生成一步的训练过程数据  
    train_writer.add_summary(train_summary,step)#调用train_writer的add_summary方法将训练过程以及训练步数保存  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

使用tf.get_collection函数筛选图中summary信息中的accuracy信息,这里的

tf.GraphKeys.SUMMARIES 是summary在collection中的标志。

当然,也可以直接:

acc_summary = tf.summary.scalar('accuracy',acc)                   #生成准确率标量图  
merge_summary = tf.summary.merge([acc_summary ,...(其他要显示的信息)])  #这里的[]不可省
  • 1
  • 2

当然也会有API版本的问题: 
1、AttributeError: ‘module’ object has no attribute ‘SummaryWriter’

tf.train.SummaryWriter 改为:tf.summary.FileWriter
  • 1

2、AttributeError: module ‘tensorflow’ has no attribute ‘merge_all_summaries’

 tf.merge_all_summaries()改为:summary_op = tf.summary.merge_all()
  • 1

3、AttributeError: ‘module’ object has no attribute ‘histogram_summary’

tf.histogram_summary(var.op.name, var) 改为:  tf.summary.histogram()
  • 1

4、AttributeError: ‘module’ object has no attribute ‘scalar_summary’

tf.scalar_summary('images', images)改为:tf.summary.scalar('images', images)
  • 1

5、AttributeError: module ‘tensorflow’ has no attribute ‘image_summary’

tf.image_summary('images', images)改为:tf.summary.image('images', images)

你可能感兴趣的:(Python,TensorFlow)