作者 l 萝卜
本文会将原理知识穿插于代码段中,相关代码和数据集可在公众号 “ 数据分析与商业实践 ” 后台回复 " AB测试 " 获取。
在电商网站 AB 测试非常常见,是将统计学与程序代码结合的经典案例之一。尽管如此,里面还是有许多值得学习和注意的地方。
A/B 测试用于测试网页的修改效果(浏览量,注册率等),测试需进行一场实验,实验中控制组为网页旧版本,实验组为网页新版本,实验还需选出一个指标 来衡量每组用户的参与度,然后根据实验结果来判断哪个版本效果更好。
通过这些测试,我们可以观察什么样的改动能最大化指标,测试适用的改动类型十分广泛,上到增加元素的大改动,下到颜色小变动都可使用这些测试。
在本次案例研究中,我们将为教育平台 “ 不吹牛分析网 ” 分析 A/B 测试的结果,以下是该公司网站的客户漏斗模型:浏览主页 > 浏览课程概述页面(课程首页) > 注册课程 > 付费并完成课程
越深入漏斗模型,不吹牛分析网就会流失越多的用户(正常现象),能进入最后阶段的用户寥寥无几。为了提高参与度,提高每个阶段之间的转化率,萝卜试着做出一些改动,并对改动进行了 A/B 测试,我们将帮萝卜分析相关测试结果,并根据结果建议是否该实现页面改版。
因为利用 Python 进行 A/B 测试在每个数据集上的使用大同小异,所以我们这里只展示课程首页的A/B测试过程,其余页面的数据集会一并提供给大家作为练习。
参数说明:
点击率 (CTR: click through rate)通常是点击数与浏览数的比例。因为网站页面会使用 cookies,所以我们可以确认单独用户,确保不重复统计同一个用户的点击率。为了进行该实验,我们对点击率作出如下定义:CTR: 单独用户点击数 / 单独用户浏览数,这一需要注意的点可以使用 pandas 中的 nunique() 函数来快捷完成
同理,实验组的计算方式相同,结果分析如下:
根据已有数据,我们通常会猜测会不会是新界面更加能够吸引用户停留并浏览,从而达到用户浏览时间越长,就越有可能注册课程。
这里的我们将使用 seaborn 结合 markdown 公式的方式来实现快捷又强大的数据可视化:
所以我们可以初步判断新改版的课程首页更吸引用户,后续将进行假设检验来进一步验证我们的猜想。
我们将从控制组和实验组中各抽取一定数量的样本来进行假设检验,下面是置信水平 α 的选择经验:
样本量过大,α-level 就没什么意义了。为了使假设检验的数据样本更加合理,我们可以使用分层抽样。Python 没有现成的库或函数,可以使用前人的轮子。
from mysampling import get_sample
# df: 输入的数据框 pandas.dataframe 对象
# sampling:抽样方法 str
## 可选值有 ["simple_random","stratified","systematic"]
## 按顺序分别为: 简单随机抽样、分层抽样、系统抽样
# stratified_col: 需要分层的列名的列表 list,只有在分层抽样时才生效
# k: 抽样个数或抽样比例 int or float
## (int, 则必须大于0; float,则必须在区间(0,1)中)
## 如果 0< k <1, 则 k 表示抽样对于总体的比例
## 如果 k >=1, 则 k 表示抽样的个数;当为分层抽样时,代表每层的样本量
data =get_sample(df=course, sampling='stratified',
stratified_col=['group'], k=300)
data.sample(4); data.info()
因为总体未知,所以我们可以使用两独立样本 T 检验,其实双样本 Z 检验也能达到类似的效果:
不难发现,有时双样本 Z 检验同样可以达到两独立样本 T 检验的效果。
综述,我们将拒绝零假设,接受 “ 新界面的浏览时长显著不同于(高于)旧界面 ” 的这个假设。
但 A/B 测试也有不足之处。虽然测试能帮你比较两种选择,但无法告诉你你还没想到的选择,在对老用户进行测试时,抗拒改变心理、新奇效应等因素都可能使测试结果出现偏差。
所以在设计 A/B 测试、基于测试结果得出结论时都需要考虑诸多因素。下面总结了一些常见考虑因素:
今天的案例就到这里,相关代码和数据集,可私聊我获取~~