在jdk 1.7 ,hashMap 采用 数组 + 链表 来存储 数据的,同一hash值的链表都存在一条链表中,但是当位于 一个桶中的元素 较多,即hash值 相同的元素较多时,通过Key 查找的效率较低。在jdk 1.8 中,引入了红黑树的概念。当链表长度 超过 阈值(8)时,将链表转换为红黑树,减少查询的时间。
(1)涉及到的结构
(1)位桶数组
transient Node[] table;//存储(位桶)的数组
(2)Node
//Node是单向链表,它实现了Map.Entry接口
static class Node implements Map.Entry {
final int hash;
final K key;
V value;
Node next;
//构造函数Hash值 键 值 下一个节点
Node(int hash, K key, V value, Node next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + = + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
//判断两个node是否相等,若key和value都相等,返回true。可以与自身比较为true
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry e = (Map.Entry)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
(3)红黑树
static final class TreeNode<k,v> extends LinkedHashMap.Entry<k,v> {
TreeNode parent; // 父节点
TreeNode left; //左子树
TreeNode right;//右子树
TreeNode prev; // needed to unlink next upon deletion
boolean red; //颜色属性
TreeNode(int hash, K key, V val, Node next) {
super(hash, key, val, next);
}
//返回当前节点的根节点
final TreeNode root() {
for (TreeNode r = this, p;;) {
if ((p = r.parent) == null)
return r;
r = p;
}
}
(5)数据域
public class HashMap<k,v> extends AbstractMap<k,v> implements Map<k,v>, Cloneable, Serializable {
private static final long serialVersionUID = 362498820763181265L;
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
static final int MAXIMUM_CAPACITY = 1 << 30;//最大容量
static final float DEFAULT_LOAD_FACTOR = 0.75f;//填充比
//当add一个元素到某个位桶,其链表长度达到8时将链表转换为红黑树
static final int TREEIFY_THRESHOLD = 8;
static final int UNTREEIFY_THRESHOLD = 6;
static final int MIN_TREEIFY_CAPACITY = 64;
transient Node[] table;//存储元素的数组
transient Set> entrySet;
transient int size;//存放元素的个数
transient int modCount;//被修改的次数fast-fail机制
int threshold;//临界值 当实际大小(容量*填充比)超过临界值时,会进行扩容
final float loadFactor;//填充比(......后面略)
(6)hashMap的 构造函数
//构造函数1
public HashMap(int initialCapacity, float loadFactor) {
//指定的初始容量非负
if (initialCapacity < 0)
throw new IllegalArgumentException(Illegal initial capacity: +
initialCapacity);
//如果指定的初始容量大于最大容量,置为最大容量
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
//填充比为正
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException(Illegal load factor: +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);//新的扩容临界值
}
//构造函数2
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//构造函数3
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
//构造函数4用m的元素初始化散列映射
public HashMap(Map m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
(7) hashMap 的get(key) 操作
public V get(Object key) {
Node e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
/**
* Implements Map.get and related methods
*
* @param hash hash for key
* @param key the key
* @return the node, or null if none
*/
final Node getNode(int hash, Object key) {
Node[] tab;//Entry对象数组
Node first,e; //在tab数组中经过散列的第一个位置
int n;
K k;
/*找到插入的第一个Node,方法是hash值和n-1相与,tab[(n - 1) & hash]*/
//也就是说在一条链上的hash值相同的
if ((tab = table) != null && (n = tab.length) > 0 &&(first = tab[(n - 1) & hash]) != null) {
/*检查第一个Node是不是要找的Node*/
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))//判断条件是hash值要相同,key值要相同
return first;
/*检查first后面的node*/
if ((e = first.next) != null) {
if (first instanceof TreeNode)
return ((TreeNode)first).getTreeNode(hash, key);
/*遍历后面的链表,找到key值和hash值都相同的Node*/
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
get(key) 方法时 获取key的hash值, 计算hash&(n-1)得到在链表数组中的位置 first= tab[hash & (n-1)] ,先判断first的key是否与参数key 相等。不等就遍历后面的链表找到相同的key值对应的value值返回就可以了。
(8)hashMap的put(key, value)操作
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
/**
* Implements Map.put and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node[] tab;
Node p;
int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
/*如果table的在(n-1)&hash的值是空,就新建一个节点插入在该位置*/
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
/*表示有冲突,开始处理冲突*/
else {
Node e;
K k;
/*检查第一个Node,p是不是要找的值*/
if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
/*指针为空就挂在后面*/
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//如果冲突的节点数已经达到8个,看是否需要改变冲突节点的存储结构,
//treeifyBin首先判断当前hashMap的长度,如果不足64,只进行
//resize,扩容table,如果达到64,那么将冲突的存储结构为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
/*如果有相同的key值就结束遍历*/
if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
/*就是链表上有相同的key值*/
if (e != null) { // existing mapping for key,就是key的Value存在
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;//返回存在的Value值
}
}
++modCount;
/*如果当前大小大于门限,门限原本是初始容量*0.75*/
if (++size > threshold)
resize();//扩容两倍
afterNodeInsertion(evict);
return null;
}
put(key, value)过程
(1)判断键值对数组 tab[] 是否为空或为null, 否则以默认大小resize()
(2)根据键值对key 计算 hash值 得到插入的数组索引i, 如果tab[i] == null, 则直接新建节点添加,否则转入3
(3)判断当前数组中处理hash冲突的方式为链表还是红黑树(check第一个节点类型就好了),分别处理
(9)hashMap的扩容机制resize()
构造hash表时,如果不指明初始大小,默认大小为16(Node数组大小16),如果Node[]数组中的元素达到(填充比 * Node.length) 重新调整HashMap大小 变为原来2倍大小,扩容比较消耗时间
/**
* Initializes or doubles table size. If null, allocates in
* accord with initial capacity target held in field threshold.
* Otherwise, because we are using power-of-two expansion, the
* elements from each bin must either stay at same index, or move
* with a power of two offset in the new table.
*
* @return the table
*/
final Node[] resize() {
Node[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
/*如果旧表的长度不是空*/
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
/*把新表的长度设置为旧表长度的两倍,newCap=2*oldCap*/
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
/*把新表的门限设置为旧表门限的两倍,newThr=oldThr*2*/
newThr = oldThr << 1; // double threshold
}
/*如果旧表的长度的是0,就是说第一次初始化表*/
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;//新表长度乘以加载因子
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
/*下面开始构造新表,初始化表中的数据*/
Node[] newTab = (Node[])new Node[newCap];
table = newTab;//把新表赋值给table
if (oldTab != null) {//原表不是空要把原表中数据移动到新表中
/*遍历原来的旧表*/
for (int j = 0; j < oldCap; ++j) {
Node e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)//说明这个node没有链表直接放在新表的e.hash & (newCap - 1)位置
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode)e).split(this, newTab, j, oldCap);
/*如果e后边有链表,到这里表示e后面带着个单链表,需要遍历单链表,将每个结点重*/
else { // preserve order保证顺序
新计算在新表的位置,并进行搬运
Node loHead = null, loTail = null;
Node hiHead = null, hiTail = null;
Node next;
do {
next = e.next;//记录下一个结点
//新表是旧表的两倍容量,实例上就把单链表拆分为两队,
//e.hash&oldCap为偶数一队,e.hash&oldCap为奇数一对
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {//lo队不为null,放在新表原位置
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {//hi队不为null,放在新表j+oldCap位置
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
(10)jdk1.8 红黑树改进
在jdk1.7 中,hashMap 处理 碰撞 的时候,的采用链表进行存储的,当碰撞的结点很多时,查询的效率很低。
在1.8 中,hashMap 处理碰撞 增加了红黑树这种数据结构,当碰撞结点较少时,采用链表存储,当教大时(> 8个),采用红黑树(查询时间O(logn))存储(有一个阈值控制,大于阈值(8个)),将链表存储转换为 红黑树存储。