题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5753
Description
There are two sequences h1∼hn and c1∼cn. h1∼hn is a permutation of 1∼n. particularly, h0=hn+1=0.
We define the expression [condition] is 1 when condition is True,is 0 when condition is False.
Define the function f(h)=∑ni=1ci[hi>hi−1 and hi>hi+1]
Bo have gotten the value of c1∼cn, and he wants to know the expected value of f(h).
Input
This problem has multi test cases(no more than 12).
For each test case, the first line contains a non-negative integer n(1≤n≤1000), second line contains n non-negative integer ci(0≤ci≤1000).
Output
For each test cases print a decimal - the expectation of f(h).
If the absolute error between your answer and the standard answer is no more than 10−4, your solution will be accepted.
Sample Input
4
3 2 4 5
5
3 5 99 32 12
Sample Output
6.000000
52.833333
Source
2016 Multi-University Training Contest 3
题意:
对于n的任意一个全排列,如果出现了hi>hi−1 && hi>hi+1 的情况,则对ci计数一次.
求所有全排列计数后,总和的期望.
题解:
先看一下官方题解:
根据期望的线性性,我们可以分开考虑每个位置对答案的贡献。
可以发现当i不在两边的时候和两端有六种大小关系,其中有两种是对答案有贡献的。
(比如n=3,考虑(123)(132)(213)(231)(312)(321)),仅有(132)(231)会对C2计数.)
那么对答案的贡献就是 Ci/2
在两端的话有两种大小关系,其中有一种对答案有贡献。
那么对答案的贡献就是 Ci/3
复杂度是O(n)。
推不出上述规律的话还可以打表找规律:统计每个Ci出现的次数.
很容易发现C1和Cn出现的次数为n!/2; 其他Ci出现的次数是n!/3;
注意特判n=1的情况.
代码:
(注释部分为打表代码)
#include
#include
#include
#include
#include
#include
#include