CodeForces - 414B Mashmokh and ACM(dp)

题目链接:https://vjudge.net/problem/CodeForces-414B
Mashmokh’s boss, Bimokh, didn’t like Mashmokh. So he fired him. Mashmokh decided to go to university and participate in ACM instead of finding a new job. He wants to become a member of Bamokh’s team. In order to join he was given some programming tasks and one week to solve them. Mashmokh is not a very experienced programmer. Actually he is not a programmer at all. So he wasn’t able to solve them. That’s why he asked you to help him with these tasks. One of these tasks is the following.

A sequence of l integers b 1, b 2, …, b l (1 ≤ b 1 ≤ b 2 ≤ … ≤ b l ≤ n) is called good if each number divides (without a remainder) by the next number in the sequence. More formally for all i (1 ≤ i ≤ l - 1).

Given n and k find the number of good sequences of length k. As the answer can be rather large print it modulo 1000000007 (10^9 + 7).
Input
The first line of input contains two space-separated integers n, k (1 ≤ n, k ≤ 2000).

Output
Output a single integer — the number of good sequences of length k modulo 1000000007 (10^9 + 7).
Input

3 2

Output

5

Input

6 4

Output

39

Input

2 1

Output

2

翻译:

给定两个数n和k。
求有多少种长度为k的子序列,满足:

  1. b 1 ,   b 2 ,   . . . ,   b k ( 1   ≤   b 1   ≤   b 2   ≤   . . .   ≤   b k   ≤   n ) b _1, b_2, ..., b_k (1 ≤ b_1 ≤ b_2 ≤ ... ≤ b _k ≤ n) b1,b2,...,bk(1b1b2...bkn)
  2. 对于任意的 1   ≤   i   ≤   k −   1 1 ≤ i ≤ k- 1 1ik1,满足 b i + 1 b_{i+1} bi+1能整除 b i b_i bi

最后结果对mod取余

分析:
定义::
d p [ i ] [ j ] dp[i][j] dp[i][j]为长度为i,最高位为j的方案数

可以得出:
d p [ i ] [ j ] = d p [ i 的 所 有 因 子 ] [ j − 1 ] dp[i][j]=dp[i的所有因子][j-1] dp[i][j]=dp[i][j1]

完整代码:

#include
#include
#include
using namespace std;
#define mod 1000000007
const int N=2*1e3+10;
int n,k;
int dp[N][N];///dp[i][j]:长度为i,最高位为j的方案数
//dp[i][j]=dp[i-1][j的因子]
int main()
{
     
	memset(dp,0,sizeof(dp));
	scanf("%d%d",&n,&k);
	for(int i=0; i<=n; i++)
		dp[1][i]=1;

	for(int i=1; i<k; i++)
	{
     
		for(int j=1; j<=n; j++)
		{
     
			for(int m=j; m<=n; m+=j)
				dp[i+1][m]=(dp[i+1][m]+dp[i][j])%mod;
		}
	}
	int res=0;
	for(int i=1; i<=n; i++)
		res=(res+dp[k][i])%mod;
	printf("%d\n",res);
	return 0;
}

你可能感兴趣的:(动态规划1---子序列问题)