There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this “How far is it if I want to go from house A to house B”? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path(“simple” means you can’t visit a place twice) between every two houses. Yout task is to answer all these curious people.
Input
First line is a single integer T(T<=10), indicating the number of test cases.
For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0
Output
For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.
模板+1。
这篇博客就专门用来存板子,把倍增,tarjan,rmq树剖什么的都打一遍。
这题任意一点都能作为根,有点意思。
倍增算法:
#include
using namespace std;
typedef long long ll;
const int maxn = 40005;
struct Node {
int ch, dis;
};
vector<Node> G[maxn];
int rdis[maxn];
int fa[22][maxn], dep[maxn];
void dfs(int u, int f, int dis) {
fa[0][u] = f;
rdis[u] = dis;
dep[u] = dep[f] + 1;
// printf("~~~~%d\n",dis);
for(int i = 0; i < G[u].size(); i++) {
int v = G[u][i].ch;
if(v == f) {
continue;
}
dfs(v, u, dis + G[u][i].dis);
}
}
void init(int n) {
memset(fa, 0, sizeof(fa));
dep[0] = 0;
dfs(1, 0, 0);
for(int k = 0; k + 1 < 20; k++) {
for(int v = 1; v <= n + n; v++) {
if(!fa[k][v]) {
fa[k + 1][v] = 0;
} else {
fa[k + 1][v] = fa[k][fa[k][v]];
}
}
}
}
int lca(int u, int v) {
if(dep[u] > dep[v]) {
swap(u, v);
}
for(int k = 0; k < 20; k++) {
if((dep[v] - dep[u]) >> k & 1) {
v = fa[k][v];
}
}
if(u == v) {
return u;
}
for(int k = 20 - 1; k >= 0; k--) {
if(fa[k][u] != fa[k][v]) {
u = fa[k][u];
v = fa[k][v];
}
}
return fa[0][u];
}
int main() {
int t, n, m;
scanf("%d", &t);
while(t--) {
scanf("%d%d", &n, &m);
for(int i = 0; i <= n; i++) {
G[i].clear();
}
int i, j, k;
for(int c = 0; c < n - 1; c++) {
scanf("%d%d%d", &i, &j, &k);
G[i].push_back({j, k});
G[j].push_back({i, k});
}
init(n);
int a, b;
while(m--) {
scanf("%d%d", &a, &b);
int ans = rdis[a] + rdis[b] - rdis[lca(a, b)] * 2;
printf("%d\n", ans);
}
}
return 0;
}
tarjan:
#include
using namespace std;
const int maxn = 40005;
int t, n, m;
int fa[maxn], rdis[maxn];
int x[maxn], y[maxn], z[maxn];
bool vis[maxn];
struct Node {
int ch, dis;
};
vector<Node> G[maxn];
int find(int x) {
return x == fa[x] ? x : fa[x] = find(fa[x]);
}
void merge(int x, int y) {
x = find(x);
y = find(y);
if(x == y) return;
fa[y] = x;
}
void init() {
rdis[1] = 0;
memset(vis, 0, sizeof(vis));
memset(fa, 0, sizeof(fa));
for(int i = 1; i <= n; i++) {
G[i].clear();
}
}
void tarjan(int u) {
vis[u] = 1;
fa[u] = u;
for(int i = 0; i < m; i++) {
if(x[i] == u && vis[y[i]]) {
z[i] = find(y[i]);
}
if(y[i] == u && vis[x[i]]) {
z[i] = find(x[i]);
}
}
for(int i = 0; i < G[u].size(); i++) {
int v = G[u][i].ch;
if(!vis[v]) {
rdis[v] = rdis[u] + G[u][i].dis;
tarjan(v);
fa[v] = u;
}
}
}
int main() {
scanf("%d", &t);
while(t--) {
init();
scanf("%d%d", &n, &m);
int u, v, dis;
for(int i = 0; i < n - 1; i++) {
scanf("%d%d%d", &u, &v, &dis);
G[u].push_back({v, dis});
G[v].push_back({u, dis});
}
for(int i = 0; i < m; i++) {
scanf("%d%d", &x[i], &y[i]);
}
tarjan(1);
for(int i = 0; i < m; i++) {
// printf("%d %d %d\n", x[i], y[i], z[i]);
printf("%d\n", rdis[x[i]] + rdis[y[i]] - rdis[z[i]] * 2);
}
}
return 0;
}