Redundant Connection

In this problem, a tree is an undirected graph that is connected and has no cycles.

The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, ..., N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.

The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] with u < v, that represents an undirected edge connecting nodes u and v.

Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge [u, v] should be in the same format, with u < v.

Example 1:

Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given undirected graph will be like this:
  1
 / \
2 - 3

 

Example 2:

Input: [[1,2], [2,3], [3,4], [1,4], [1,5]]
Output: [1,4]
Explanation: The given undirected graph will be like this:
5 - 1 - 2
    |   |
    4 - 3

 

Note:

  • The size of the input 2D-array will be between 3 and 1000.
  • Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.

 

 

Update (2017-09-26):
We have overhauled the problem description + test cases and specified clearly the graph is an undirected graph. For the directed graph follow up please see Redundant Connection II). We apologize for any inconvenience caused.

 

题解:

这题用到了并查集的算法

reference:https://blog.csdn.net/dm_vincent/article/details/7655764

 

从例子来看,是从给出的起点终点的数组edges中,找出第一个形成环的元素。

思路:

题目中,每个数字代表一个点,定义一个起点与终点的数组begin,begin有2001个元素,begin的下标代表终点,begin的元素代表原始起点(最开始的起点),题目可以化简为找出第一个edge,这个edge的起点和终点都有同样的一个原始起点,即形成环。

初始化为每个起点的终点都指向自身为原始起点。然后遍历edges数组,更新新遍历的点,更新原始起点,直至找到环为止。

以example 1为例,

begin 的下标为 0 1 2 3 ... ...

初始化后元素为 0 1 2 3

[1 2] 进入后的为 0 1 1 3,2的原始起点更新为1

[1 3] 进入后的为 0 1 1 1,3的原始起点更新为1

[2 3] 进入后,发现2与3的原始起点一致,均为1,发现环。

 

reference:

https://blog.csdn.net/dong_beijing/article/details/78094443

class Solution {
    int[] roots;
    public int[] findRedundantConnection(int[][] edges) {
        roots = new int[edges.length + 1];
        for(int i = 0; i < roots.length; i++) {
            roots[i] = i;
        }
        for(int[] edge : edges) {
            int root1 = find(edge[0]);
            int root2 = find(edge[1]);
            if(root1 == root2)
                return edge;
            roots[root2] = root1;
        }
        int[] ans = new int[2];
        return ans;
    }
    
    public int find(int i) {
        while(i != roots[i]) {
            i = roots[i];
        }
        return i;
    }
}

 

转载于:https://www.cnblogs.com/hygeia/p/10166705.html

你可能感兴趣的:(Redundant Connection)