HDU3652:B-number(数位DP)

Problem Description
A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- string "13" and can be divided by 13. For example, 130 and 2613 are wqb-numbers, but 143 and 2639 are not. Your task is to calculate how many wqb-numbers from 1 to n for a given integer n.
 

Input
Process till EOF. In each line, there is one positive integer n(1 <= n <= 1000000000).
 

Output
Print each answer in a single line.
 

Sample Input
 
   
13 100 200 1000
 

Sample Output
 
   
1 1 2 2
 


题意:找出1~n范围内含有13并且能被13整除的数字的个数

思路:使用记忆化深搜来记录状态,配合数位DP来解决

 

#include 
#include 
#include 
using namespace std;

int bit[15];
int dp[15][15][3];
//dp[i][j][k]
//i:数位
//j:余数
//k:3种操作状况,0:末尾不是1,1:末尾是1,2:含有13

int dfs(int pos,int mod,int have,int lim)//lim记录上限
{
    int num,i,ans,mod_x,have_x;
    if(pos<=0)
        return mod == 0 && have == 2;
    if(!lim && dp[pos][mod][have] != -1)//没有上限并且已被访问过
        return dp[pos][mod][have];
    num = lim?bit[pos]:9;//假设该位是2,下一位是3,如果现在算到该位为1,那么下一位是能取到9的,如果该位为2,下一位只能取到3
    ans = 0;
    for(i = 0; i<=num; i++)
    {
        mod_x = (mod*10+i)%13;//看是否能整除13,而且由于是从原来数字最高位开始算,细心的同学可以发现,事实上这个过程就是一个除法过程
        have_x = have;
        if(have == 0 && i == 1)//末尾不是1,现在加入的是1
            have_x = 1;//标记为末尾是1
        if(have == 1 && i != 1)//末尾是1,现在加入的不是1
            have_x = 0;//标记为末尾不是1
        if(have == 1 && i == 3)//末尾是1,现在加入的是3
            have_x = 2;//标记为含有13
        ans+=dfs(pos-1,mod_x,have_x,lim&&i==num);//lim&&i==num,在最开始,取出的num是最高位,所以如果i比num小,那么i的下一位都可以到达9,而i==num了,最大能到达的就只有,bit[pos-1]
    }
    if(!lim)
        dp[pos][mod][have] = ans;
    return ans;
}

int main()
{
    int n,len;
    while(~scanf("%d",&n))
    {
        memset(bit,0,sizeof(bit));
        memset(dp,-1,sizeof(dp));
        len = 0;
        while(n)
        {
            bit[++len] = n%10;
            n/=10;
        }
        printf("%d\n",dfs(len,0,0,1));
    }

    return 0;
}

你可能感兴趣的:(DP)