【python数据分析】matlabplot初体验

Matplotlib → 一个python版的matlab绘图接口,以2D为主,支持python、numpy、pandas基本数据结构,运营高效且有较丰富的图表库

1、图标的基本参数设置

df = pd.DataFrame(np.random.rand(10,2),columns=['A','B'])
fig = df.plot(figsize=(6,4))
# figsize:创建图表窗口,设置窗口大小
# 创建图表对象,并赋值与fig

plt.title('Interesting Graph - Check it out')  # 图名
plt.xlabel('Plot Number')  # x轴标签
plt.ylabel('Important var') # y轴标签

plt.legend(loc = 'upper right')  
# 显示图例,loc表示位置
# 'best'         : 0, (only implemented for axes legends)(自适应方式)
# 'upper right'  : 1,
# 'upper left'   : 2,
# 'lower left'   : 3,
# 'lower right'  : 4,
# 'right'        : 5,
# 'center left'  : 6,
# 'center right' : 7,
# 'lower center' : 8,
# 'upper center' : 9,
# 'center'       : 10,

plt.xlim([0,12])  # x轴边界
plt.ylim([0,1.5])  # y轴边界
plt.xticks(range(10))  # 设置x刻度
plt.yticks([0,0.2,0.4,0.6,0.8,1.0,1.2])  # 设置y刻度
fig.set_xticklabels("%.1f" %i for i in range(10))  # x轴刻度标签
fig.set_yticklabels("%.2f" %i for i in [0,0.2,0.4,0.6,0.8,1.0,1.2])  # y轴刻度标签
# 范围只限定图表的长度,刻度则是决定显示的标尺 → 这里x轴范围是0-12,但刻度只是0-9,刻度标签使得其显示1位小数
# 轴标签则是显示刻度的标签

print(fig,type(fig))
# 查看表格本身的显示方式,以及类别

【python数据分析】matlabplot初体验_第1张图片

2、网格显示,线型,颜色

x = np.linspace(-np.pi,np.pi,256,endpoint = True)
c, s = np.cos(x), np.sin(x)
plt.plot(x, c)
plt.plot(x, s)
# 通过ndarry创建图表

plt.grid(True, linestyle = "--",color = "gray", linewidth = "0.5",axis = 'x')  
# 显示网格
# linestyle:线型
# color:颜色
# linewidth:宽度
# axis:x,y,both,显示x/y/两者的格网

plt.tick_params(bottom='on',top='off',left='on',right='off')  
# 刻度显示

import matplotlib
matplotlib.rcParams['xtick.direction'] = 'out' 
matplotlib.rcParams['ytick.direction'] = 'inout' 
# 设置刻度的方向,in,out,inout
# 这里需要导入matploltib,而不仅仅导入matplotlib.pyplot


frame = plt.gca()
#plt.axis('off')
# 关闭坐标轴
#frame.axes.get_xaxis().set_visible(False)
#frame.axes.get_yaxis().set_visible(False)
# x/y 轴不可见

3、 图表的样式参数

plt.plot([i**2 for i in range(100)],
        linestyle = '-.')
# '-'       solid line style
# '--'      dashed line style
# '-.'      dash-dot line style
# ':'       dotted line style

 

 

你可能感兴趣的:(python,python,数据分析,matlabplot)