HDU1423(最长递增公共子序列+DP)

Greatest Common Increasing Subsequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2304    Accepted Submission(s): 699


Problem Description
This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence.
 


 

Input
Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.
 


 

Output
output print L - the length of the greatest common increasing subsequence of both sequences.
 


 

Sample Input
 
   
1 5 1 4 2 5 -12 4 -12 1 2 4
 


 

Sample Output
 
   
2

 

动态规划求最长递增公共子序列

#include
using namespace std;
#define MAX 510

int a[MAX];
int b[MAX];
int dp[MAX];

int main()
{
 int t,n,m,i,j,k,max;
 cin>>t;
 while(t--)
 {
  cin>>n;
  for(i=0;i>a[i];
  }
  
  cin>>m;
  for(i=0;i>b[i];
  }
  
  
  
  memset(dp,0,sizeof(dp));
  max=0;
  for(i=0;ib[j]&&dp[k]

 
  
 
 

你可能感兴趣的:(动态规划-非递归求解)