结构体的内嵌再配合接口
比面向对象具有更高的扩展性和灵活性。
自定义类型是定义了一个全新的类型。
//将MyInt定义为int类型
type MyInt int
通过type关键字的定义,MyInt就是一种新的类型,它具有int的特性。
下面的TypeAlias只是Type的别名,本质上TypeAlias与Type是同一个类型。
type TypeAlias = Type
我们之前见过的rune和byte就是类型别名,他们的定义如下:
type byte = uint8
type rune = int32
类型别名与类型定义表面上看只有一个等号的差异,我们通过下面的这段代码来理解它们之间的区别。
//类型定义
type NewInt int
//类型别名
type MyInt = int
func main() {
var a NewInt
var b MyInt
fmt.Printf("type of a:%T\n", a) //type of a:main.NewInt
fmt.Printf("type of b:%T\n", b) //type of b:int
}
结果显示a的类型是main.NewInt
,表示main包下定义的NewInt类型。b的类型是int
。类型的别名只会在代码中存在,编译完成时并不会有此别名
。
相信大家应该对java、python等支持面向对象编程的语言有过了解吧,一个类中有数据属性与方法属性,虽然Go语言不支持面向对象,但是个人认为有面向对象的影子在里面,比如结构体主要就是数据属性的集合,接口就是实现方法属性的!
Go语言提供了一种自定义数据类型,可以封装多个基本数据类型,这种数据类型叫结构体,英文名称struct
。 也就是我们可以通过struct来定义自己的类型了。
使用type
和struct
关键字来定义结构体,具体代码格式如下:
type 类型名 struct {
字段名 字段类型
字段名 字段类型
…
}
其中:
type person1 struct {
name, city string // 同样类型的字段也可以写在一行
age int8
}
看到这里是不是有我说的面向对象的感觉了,哈哈哈,别急,骚操作下面还有很多!
只有当结构体实例化时,才会真正地分配内存
。也就是必须实例化后才能使用结构体的字段。
结构体本身也是一种类型,我们可以像声明内置类型一样使用var关键字声明结构体类型并实例化
。
var 结构体实例名称 结构体类型
type person struct {
name string
city string
age int8
}
func main() {
var p1 person
p1.name = "沙河娜扎"
p1.city = "北京"
p1.age = 18
fmt.Printf("p1=%v\n", p1) //p1={沙河娜扎 北京 18}
fmt.Printf("p1=%#v\n", p1) //p1=main.person{name:"沙河娜扎", city:"北京", age:18}
}
在定义一些临时数据结构
等场景下还可以使用匿名结构体。
package main
import (
"fmt"
)
func main() {
var user struct{
Name string; Age int}
user.Name = "小王子"
user.Age = 18
fmt.Printf("%#v\n", user)
}
我们还可以通过使用new
关键字对结构体进行实例化,得到的是结构体的地址。 格式如下:
var p2 = new(person)
fmt.Printf("%T\n", p2) //*main.person
fmt.Printf("p2=%#v\n", p2) //p2=&main.person{name:"", city:"", age:0}
从打印的结果中我们可以看出p2是一个结构体指针
。
注意:Go语言中支持对结构体指针直接使用.来访问结构体的成员
,如下面注释部分。
var p2 = new(person)
(*p2).name="吴晋丞" // 可以简写为p2.name="吴晋丞",Go语言遇到指针会自动解引用!
(*p2).city="成都"
(*p2).age=18
fmt.Printf("%T\n",p2)
fmt.Printf("%#v\n",p2)
运行结果:
*main.person
&main.person{
name:"吴晋丞", city:"成都", age:18}
使用&
对结构体进行取地址操作相当于
对该结构体类型进行了一次new实例化
操作。
p3 := &person{
}
fmt.Printf("%T\n", p3) //*main.person
fmt.Printf("p3=%#v\n", p3) //p3=&main.person{name:"", city:"", age:0}
p3.name = "七米"
p3.age = 30
p3.city = "成都"
fmt.Printf("p3=%#v\n", p3) //p3=&main.person{name:"七米", city:"成都", age:30}
p3.name = "七米"其实在底层是(*p3).name = "七米"
,这是Go语言帮我们实现的语法糖。和上面(3)一样的语法糖
没有初始化的结构体,其成员变量都是对应其类型的零值。
type person struct {
name string
city string
age int8
}
func main() {
var p4 person
fmt.Printf("p4=%#v\n", p4) // p4=main.person{name:"", city:"", age:0}
}
p5 := person{
name: "小王子",
city: "北京",
age: 18,
}
fmt.Printf("p5=%#v\n", p5) //p5=main.person{name:"小王子", city:"北京", age:18}
也可以对结构体指针进行键值对初始化,例如:
p6 := &person{
name: "小王子",
city: "北京",
age: 18,
}
fmt.Printf("p6=%#v\n", p6) //p6=&main.person{name:"小王子", city:"北京", age:18}
初始化结构体的时候可以简写,也就是初始化的时候不写键,直接写值:
p8 := &person{
"沙河娜扎",
"北京",
28,
}
fmt.Printf("p8=%#v\n", p8) //p8=&main.person{name:"沙河娜扎", city:"北京", age:28}
使用这个格式初始化时,需要注意以下几点:
必须初始化结构体的所有字段
。填充顺序
必须与字段在结构体中的声明顺序一致
。不能和键值初始化方式混用
。结构体占用一块连续的内存。
type test struct {
a int8
b int8
c int8
d int8
}
n := test{
1, 2, 3, 4,
}
fmt.Printf("n.a %p\n", &n.a)
fmt.Printf("n.b %p\n", &n.b)
fmt.Printf("n.c %p\n", &n.c)
fmt.Printf("n.d %p\n", &n.d)
运行结果:
n.a 0xc0000a0060
n.b 0xc0000a0061
n.c 0xc0000a0062
n.d 0xc0000a0063
空结构体是不占用空间的。
var v struct{
}
fmt.Println(unsafe.Sizeof(v)) // 0
请问下面代码的执行结果是什么?
type student struct {
name string
age int
}
func main() {
m := make(map[string]*student)
stus := []student{
{
name: "小王子", age: 18},
{
name: "娜扎", age: 23},
{
name: "大王八", age: 9000},
}
for _, stu := range stus {
m[stu.name] = &stu
}
for k, v := range m {
fmt.Println(k, "=>", v.name)
}
}
Go语言的结构体没有构造函数,我们可以自己实现。 例如,下方的代码就实现了一个person的构造函数。 因为struct是值类型,如果结构体比较复杂的话,值拷贝性能开销会比较大,所以该构造函数返回的是结构体指针类型
。
func newPerson(name, city string, age int8) *person {
return &person{
name: name,
city: city,
age: age,
}
}
调用构造函数
p9 := newPerson("张三", "沙河", 90)
fmt.Printf("%#v\n", p9) //&main.person{name:"张三", city:"沙河", age:90}
Go语言中的方法(Method)
是一种作用于特定类型变量的函数。这种特定类型变量叫做接收者(Receiver)。接收者的概念就类似于其他语言中的this或者 self
。
方法的定义格式如下:
func (接收者变量 接收者类型) 方法名(参数列表) (返回参数) {
函数体
}
官方建议直接使用接收者类型名称首字母的小写
指针类型和非指针类型
。//Person 结构体
type Person struct {
name string
age int8
}
//NewPerson 构造函数
func NewPerson(name string, age int8) *Person {
return &Person{
name: name,
age: age,
}
}
//Dream Person做梦的方法
func (p Person) Dream() {
fmt.Printf("%s的梦想是学好Go语言!\n", p.name)
}
func main() {
p1 := NewPerson("小王子", 25)
p1.Dream()
}
方法与函数的区别是,函数不属于任何类型,方法是属于特定的类型。
如果你把struct看作是一个对象的话,那么你可以把方法理解为属于特定对象的函数!
指针类型的接收者由一个结构体的指针组成,由于指针的特性,调用方法时修改接收者指针的任意成员变量,在方法结束后,修改都是有效的
。例如我们为Person添加一个SetAge方法,来修改实例变量的年龄。
// SetAge 设置p的年龄
// 使用指针接收者
func (p *Person) SetAge(newAge int8) {
p.age = newAge
}
当方法作用于值类型接收者时,Go语言会在代码运行时将接收者的值复制一份。在值类型接收者的方法中可以获取接收者的成员值,但修改操作只是针对副本,无法修改接收者变量本身。
// SetAge2 设置p的年龄
// 使用值接收者
func (p Person) SetAge2(newAge int8) {
p.age = newAge
}
func main() {
p1 := NewPerson("小王子", 25)
p1.Dream()
fmt.Println(p1.age) // 25
p1.SetAge2(30) // (*p1).SetAge2(30) 自动解引用
fmt.Println(p1.age) // 25
}
在Go语言中,接收者的类型可以是任何类型,不仅仅是结构体,任何类型都可以拥有方法。 举个例子,我们基于内置的int类型使用type关键字可以定义新的自定义类型,然后为我们的自定义类型添加方法。
//MyInt 将int定义为自定义MyInt类型
type MyInt int
//SayHello 为MyInt添加一个SayHello的方法
func (m MyInt) SayHello() {
fmt.Println("Hello, 我是一个int。")
}
func main() {
var m1 MyInt
m1.SayHello() //Hello, 我是一个int。
m1 = 100
fmt.Printf("%#v %T\n", m1, m1) //100 main.MyInt
}
注意事项: 非本地类型不能定义方法,也就是说我们不能给别的包的类型定义方法。
结构体允许其成员字段在声明时没有字段名而只有类型,这种没有名字的字段就称为匿名字段
。
//Person 结构体Person类型
type Person struct {
string
int
}
func main() {
p1 := Person{
"小王子",
18,
}
fmt.Printf("%#v\n", p1) //main.Person{string:"北京", int:18}
fmt.Println(p1.string, p1.int) //北京 18
}
注意: 这里匿名字段的说法并不代表没有字段名,而是默认会采用类型名作为字段名
,结构体要求字段名称必须唯一,因此一个结构体中同种类型的匿名字段只能有一个。
//Address 地址结构体
type Address struct {
Province string
City string
}
//User 用户结构体
type User struct {
Name string
Gender string
Address Address
}
func main() {
user1 := User{
Name: "小王子",
Gender: "男",
Address: Address{
Province: "山东",
City: "威海",
},
}
fmt.Printf("user1=%#v\n", user1) //user1=main.User{Name:"小王子", Gender:"男", Address:main.Address{Province:"山东", City:"威海"}}
}
上面user结构体中嵌套的Address结构体也可以采用匿名字段的方式,例如:
//Address 地址结构体
type Address struct {
Province string
City string
}
//User 用户结构体
type User struct {
Name string
Gender string
Address //匿名字段
}
func main() {
var user2 User
user2.Name = "小王子"
user2.Gender = "男"
user2.Address.Province = "山东" // 匿名字段默认使用类型名作为字段名
user2.City = "威海" // 匿名字段可以省略
fmt.Printf("user2=%#v\n", user2) //user2=main.User{Name:"小王子", Gender:"男", Address:main.Address{Province:"山东", City:"威海"}}
}
当访问结构体成员时会先在结构体中查找该字段,找不到再去嵌套的匿名字段中查找。
嵌套结构体内部可能存在相同的字段名。在这种情况下为了避免歧义需要通过指定具体的内嵌结构体字段名。
//Address 地址结构体
type Address struct {
Province string
City string
CreateTime string // 和Email冲突
}
//Email 邮箱结构体
type Email struct {
Account string
CreateTime string // 和Address冲突
}
//User 用户结构体
type User struct {
Name string
Gender string
Address
Email
}
func main() {
var user3 User
user3.Name = "沙河娜扎"
user3.Gender = "男"
// user3.CreateTime = "2019" //ambiguous selector user3.CreateTime
user3.Address.CreateTime = "2000" //指定Address结构体中的CreateTime
user3.Email.CreateTime = "2000" //指定Email结构体中的CreateTime
}
我们可以通过下面这种方法实现,面向对象中的组合!
//Animal 动物
type Animal struct {
name string
}
func (a *Animal) move() {
fmt.Printf("%s会动!\n", a.name)
}
//Dog 狗
type Dog struct {
Feet int8
*Animal //通过嵌套匿名结构体指针实现组合
}
func (d *Dog) wang() {
fmt.Printf("%s会汪汪汪~\n", d.name)
}
func main() {
d1 := &Dog{
Feet: 4,
Animal: &Animal{
//注意嵌套的是结构体指针
name: "乐乐",
},
}
d1.wang() //乐乐会汪汪汪~
d1.move() //乐乐会动!
}
什么是组合?我们看看python中的组合:
https://blog.csdn.net/weixin_44571270/article/details/106318934
注意: 很多人都说上面相当于是面向对象中的继承,这句话是错的,实际上是组合!
结构体中字段大写开头表示可公开访问,小写表示私有
(仅在定义当前结构体的包中可访问)。
我们的函数名、变量名
也是这样的哦!
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。易于人阅读和编写。同时也易于机器解析和生成。JSON键值对是用来保存JS对象的一种方式,键/值对组合中的键名写在前面并用双引号""包裹,使用冒号:分隔,然后紧接着值;多个键值之间使用英文,分隔。
json.Marshal(c) // 序列化
json.Unmarshal() // 反序列化
//Student 学生
type Student struct {
ID int
Gender string
Name string
}
//Class 班级
type Class struct {
Title string
Students []*Student
}
func main() {
c := &Class{
Title: "101",
Students: make([]*Student, 0, 200),
}
for i := 0; i < 10; i++ {
stu := &Student{
Name: fmt.Sprintf("stu%02d", i),
Gender: "男",
ID: i,
}
c.Students = append(c.Students, stu)
}
//JSON序列化:结构体-->JSON格式的字符串
data, err := json.Marshal(c)
if err != nil {
fmt.Println("json marshal failed")
return
}
fmt.Printf("json:%s\n", data)
//JSON反序列化:JSON格式的字符串-->结构体
str := `{"Title":"101","Students":[{"ID":0,"Gender":"男","Name":"stu00"},{"ID":1,"Gender":"男","Name":"stu01"},{"ID":2,"Gender":"男","Name":"stu02"},{"ID":3,"Gender":"男","Name":"stu03"},{"ID":4,"Gender":"男","Name":"stu04"},{"ID":5,"Gender":"男","Name":"stu05"},{"ID":6,"Gender":"男","Name":"stu06"},{"ID":7,"Gender":"男","Name":"stu07"},{"ID":8,"Gender":"男","Name":"stu08"},{"ID":9,"Gender":"男","Name":"stu09"}]}`
c1 := &Class{
}
err = json.Unmarshal([]byte(str), c1)
if err != nil {
fmt.Println("json unmarshal failed!")
return
}
fmt.Printf("%#v\n", c1)
}
因为slice和map这两种数据类型都包含了指向底层数据的指针,因此我们在需要复制它们时要特别注意。我们来看下面的例子:
type Person struct {
name string
age int8
dreams []string
}
func (p *Person) SetDreams(dreams []string) {
p.dreams = dreams
}
func main() {
p1 := Person{
name: "小王子", age: 18}
data := []string{
"吃饭", "睡觉", "打豆豆"}
p1.SetDreams(data)
}
正确的做法是在方法中使用传入的slice的拷贝进行结构体赋值。
func (p *Person) SetDreams(dreams []string) {
p.dreams = make([]string, len(dreams))
copy(p.dreams, dreams)
}
同样的问题也存在于返回值slice和map的情况,在实际编码过程中一定要注意这个问题。