HDU Knight Moves

Knight Moves

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 96 Accepted Submission(s): 77
Problem Description
A friend of you is doing research on the Traveling Knight Problem (TKP) where you are to find the shortest closed tour of knight moves that visits each square of a given set of n squares on a chessboard exactly once. He thinks that the most difficult part of the problem is determining the smallest number of knight moves between two given squares and that, once you have accomplished this, finding the tour would be easy.
Of course you know that it is vice versa. So you offer him to write a program that solves the "difficult" part.

Your job is to write a program that takes two squares a and b as input and then determines the number of knight moves on a shortest route from a to b.
 
Input
The input file will contain one or more test cases. Each test case consists of one line containing two squares separated by one space. A square is a string consisting of a letter (a-h) representing the column and a digit (1-8) representing the row on the chessboard.

 
Output

            For each test case, print one line saying "To get from xx to yy takes n knight moves.".
 
Sample Input
e2 e4

a1 b2

b2 c3

a1 h8

a1 h7

h8 a1

b1 c3

f6 f6
 
Sample Output
To get from e2 to e4 takes 2 knight moves.

To get from a1 to b2 takes 4 knight moves.

To get from b2 to c3 takes 2 knight moves.

To get from a1 to h8 takes 6 knight moves.

To get from a1 to h7 takes 5 knight moves.

To get from h8 to a1 takes 6 knight moves.

To get from b1 to c3 takes 1 knight moves.

To get from f6 to f6 takes 0 knight moves.
 

分析:广度优先搜索题

题意如图所示:一个棋子(骑士)可以有八个方向走,广搜确定最小的走的步数。

HDU Knight Moves

 

#include <iostream>
#include
<stdio.h>
#include
<string.h>
#include
<queue>
using namespace std;
int c[9][9];
int dir[8][2] = {{-2,-1},{-2,1},{-1,2},{1,2},{2,1},{2,-1},{1,-2},{-1,-2}};
typedef
struct
{
int x,y,count;
}node;
node start,finish;
int bfs()
{
memset(c,
0,sizeof(c));
node pre,cur;
start.count
= 0;
queue
<node> q;
q.push(start);
c[start.x][start.y]
= 1;
while(!q.empty())
{
pre
= q.front();
q.pop();
if(pre.x == finish.x&&pre.y == finish.y)
return pre.count;
for(int i = 0; i < 8; i++)
{
cur.x
= pre.x + dir[i][0];
cur.y
= pre.y + dir[i][1];
if(cur.x<1||cur.x>8||cur.y<1||cur.y>8)continue;
if(c[cur.x][cur.y]==1)continue;
c[cur.x][cur.y]
= 1;
cur.count
= pre.count + 1;
q.push(cur);
}
}
return -1;
}
int main()
{
char row,end;
int col,ed;
int min;
while(scanf("%c",&row)!=EOF)
{
scanf(
"%d",&col);
getchar();
scanf(
"%c%d",&end,&ed);
getchar();
start.x
= row-'a'+1;
start.y
= col;
finish.x
= end-'a'+1;
finish.y
= ed;
if(start.x==finish.x&&start.y==finish.y)
min
= 0;
else min = bfs();
printf(
"To get from %c%d to %c%d takes %d knight moves.\n",row,col,end,ed,min);
}
return 0;
}

你可能感兴趣的:(move)