原文
http://developer.android.com/guide/developing/tools/aidl.html (
注意:
3.0 r1
以后移到
Appendix
下
)
正文
使用AIDL设计远程接口(Designing a Remote Interface Using AIDL)
由于每个应用程序都运行在自己的进程空间,并且可以从应用程序UI运行另一个服务进程,而且经常会在不同的进程间传递对象。在Android平台,一个进程通常不能访问另一个进程的内存空间,所以要想对话,需要将对象分解成操作系统可以理解的基本单元,并且有序的通过进程边界。
通过代码来实现这个数据传输过程是冗长乏味的,Android提供了AIDL工具来处理这项工作。
AIDL (Android Interface Definition Language)是一种IDL 语言,用于生成可以在Android设备上两个进程之间进行进程间通信(IPC)的代码。如果在一个进程中(例如Activity)要调用另一个进程中(例如Service)对象的操作,就可以使用AIDL生成可序列化的参数。
AIDL IPC机制是面向接口的,像COM或Corba一样,但是更加轻量级。它是使用代理类在客户端和实现端传递数据。
使用AIDL实现IPC(Implementing IPC Using AIDL)
使用AIDL实现IPC服务的步骤是:
1. 创建.aidl文件-该文件(YourInterface.aidl)定义了客户端可用的方法和数据的接口。
2. 在makefile文件中加入.aidl文件-(Eclipse中的ADT插件提供管理功能)Android包括名为AIDL的编译器,位于tools/文件夹。
3. 实现接口-AIDL编译器从AIDL接口文件中利用Java语言创建接口,该接口有一个继承的命名为Stub的内部抽象类(并且实现了一些IPC调用的附加方法),要做的就是创建一个继承于YourInterface.Stub的类并且实现在.aidl文件中声明的方法。
4. 向客户端公开接口-如果是编写服务,应该继承Service并且重载Service.onBind(Intent) 以返回实现了接口的对象实例
创建.aidl文件(Create an .aidl File)
AIDL使用简单的语法来声明接口,描述其方法以及方法的参数和返回值。这些参数和返回值可以是任何类型,甚至是其他AIDL生成的接口。重要的是必须导入所有非内置类型,哪怕是这些类型是在与接口相同的包中。下面是AIDL能支持的数据类型:
* Java编程语言的主要类型 (int, boolean等) — 不需要 import 语句。
* 以下的类 (不需要import 语句):
String
List -列表中的所有元素必须是在此列出的类型,包括其他AIDL生成的接口和可打包类型。List可以像一般的类(例如List<String>)那样使用,另一边接收的具体类一般是一个ArrayList,这些方法会使用List接口。
Map - Map中的所有元素必须是在此列出的类型,包括其他AIDL生成的接口和可打包类型。一般的maps(例如Map<String,Integer>)不被支持,另一边接收的具体类一般是一个HashMap,这些方法会使用Map接口。
CharSequence -该类是被TextView和其他控件对象使用的字符序列。
* 通常引引用方式传递的其他AIDL生成的接口,必须要import 语句声明
* 实现了Parcelable protocol 以及按值传递的自定义类,必须要import 语句声明。
以下是基本的AIDL语法:
实现接口(Implementing the Interface)
AIDL生成了与.aidl文件同名的接口,如果使用Eclipse插件,AIDL会做为编译过程的一部分自动运行(不需要先运行AIDL再编译项目),如果没有插件,就要先运行AIDL。
生成的接口包含一个名为Stub的抽象的内部类,该类声明了所有.aidl中描述的方法,Stub还定义了少量的辅助方法,尤其是asInterface(),通过它或以获得IBinder(当applicationContext.bindService()成功调用时传递到客户端的onServiceConnected())并且返回用于调用IPC方法的接口实例,更多细节参见Calling an IPC Method。
要实现自己的接口,就从YourInterface.Stub类继承,然后实现相关的方法(可以创建.aidl文件然后实现stub方法而不用在中间编译,Android编译过程会在.java文件之前处理.aidl文件)。
这个例子实现了对
IRemoteService
接口的调用,这里使用了匿名对象并且只有一个
getPid()
接口。
这里是实现接口的几条说明:
* 不会有返回给调用方的异常
* 默认IPC调用是同步的。如果已知IPC服务端会花费很多毫秒才能完成,那就不要在Activity或View线程中调用,否则会引起应用程序挂起(Android可能会显示“应用程序未响应”对话框),可以试着在独立的线程中调用。
* AIDL接口中只支持方法,不能声明静态成员。
向客户端暴露接口(Exposing Your Interface to Clients)
在完成了接口的实现后需要向客户端暴露接口了,也就是发布服务,实现的方法是继承 Service,然后实现以Service.onBind(Intent)返回一个实现了接口的类对象。下面的代码片断表示了暴露IRemoteService接口给客户端的方式。
public
class
RemoteService
extends
Service {
...
@Override
public
IBinder onBind(Intent intent) {
//
Select the interface to return. If your service only implements
//
a single interface, you can just return it here without checking
//
the Intent.
if
(IRemoteService.
class
.getName().equals(intent.getAction())) {
return
mBinder;
}
if
(ISecondary.
class
.getName().equals(intent.getAction())) {
return
mSecondaryBinder;
}
return
null
;
}
/**
* The IRemoteInterface is defined through IDL
*/
private
final
IRemoteService.Stub mBinder
=
new
IRemoteService.Stub() {
public
void
registerCallback(IRemoteServiceCallback cb) {
if
(cb
!=
null
) mCallbacks.register(cb);
}
public
void
unregisterCallback(IRemoteServiceCallback cb) {
if
(cb
!=
null
) mCallbacks.unregister(cb);
}
};
/**
* A secondary interface to the service.
*/
private
final
ISecondary.Stub mSecondaryBinder
=
new
ISecondary.Stub() {
public
int
getPid() {
return
Process.myPid();
}
public
void
basicTypes(
int
anInt,
long
aLong,
boolean
aBoolean,
float
aFloat,
double
aDouble, String aString) {
}
};
}
使用可打包接口传递参数Pass by value Parameters using Parcelables
如果有类想要能过AIDL在进程之间传递,这一想法是可以实现的,必须确保这个类在IPC的两端的有效性,通常的情形是与一个启动的服务通信。
这里列出了使类能够支持Parcelable的4个步骤:【译者注:原文为5,但列表为4项,疑为作者笔误】
1. 使该类实现Parcelabel接口。
2. 实现public void writeToParcel(Parcel out) 方法,以便可以将对象的当前状态写入包装对象中。
3. 增加名为CREATOR的构造器到类中,并实现Parcelable.Creator接口。
4. 最后,但同样重要的是,创建AIDL文件声明这个可打包的类(见下文),如果使用的是自定义的编译过程,那么不要编译此AIDL文件,它像C语言的头文件一样不需要编译。
AIDL会使用这些方法的成员序列化和反序列化对象。
这个例子演示了如何让Rect类实现Parcelable接口。
import
android.os.Parcel;
import
android.os.Parcelable;
public
final
class
Rect
implements
Parcelable {
public
int
left;
public
int
top;
public
int
right;
public
int
bottom;
public
static
final
Parcelable.Creator
<
Rect
>
CREATOR
=
new
Parcelable.Creator
<
Rect
>
() {
public
Rect createFromParcel(Parcel in) {
return
new
Rect(in);
}
public
Rect[] newArray(
int
size) {
return
new
Rect[size];
}
};
public
Rect() {
}
private
Rect(Parcel in) {
readFromParcel(in);
}
public
void
writeToParcel(Parcel out) {
out.writeInt(left);
out.writeInt(top);
out.writeInt(right);
out.writeInt(bottom);
}
public
void
readFromParcel(Parcel in) {
left
=
in.readInt();
top
=
in.readInt();
right
=
in.readInt();
bottom
=
in.readInt();
}
}
这个是Rect.aidl文件。
序列化Rect类的工作相当简单,对可打包的其他类型的数据可以参见Parcel类。
警告
:不要忘了对从其他进程接收到的数据进行安全检查。在上面的例子中,
rect
要从数据包中读取
4
个数值,需要确认无论调用方想要做什么,这些数值都是在可接受的范围之内。想要了解更多的关于保持应用程序安全的内容,可参见
Security and Permissions
。
调用IPC方法(Calling an IPC Method)
这里给出了调用远端接口的步骤:
1. 声明.aidl文件中定义的接口类型的变量。
2. 实现ServiceConnection
3. 调用Context.bindService(),传递ServiceConnection的实现
4. 在ServiceConnection.onServiceConnected()方法中会接收到IBinder对象,调用YourInterfaceName.Stub.asInterface((IBinder)service)将返回值转换为YourInterface类型
5. 调用接口中定义的方法。应该总是捕获连接被打断时抛出的DeadObjectException异常,这是远端方法唯一的异常。
6. 调用Context.unbindService()断开连接
这里是几个调用IPC服务的提示:
* 对象是在进程间进行引用计数
* 可以发送匿名对象作为方法参数
以下是演示调用
AIDL
创建的服务,可以在
ApiDemos
项目中获取远程服务的示例。
public
static
class
Binding
extends
Activity {
/**
The primary interface we will be calling on the service.
*/
IRemoteService mService
=
null
;
/**
Another interface we use on the service.
*/
ISecondary mSecondaryService
=
null
;
Button mKillButton;
TextView mCallbackText;
private
boolean
mIsBound;
/**
* Standard initialization of this activity. Set up the UI, then wait
* for the user to poke it before doing anything.
*/
@Override
protected
void
onCreate(Bundle savedInstanceState) {
super
.onCreate(savedInstanceState);
setContentView(R.layout.remote_service_binding);
//
Watch for button clicks.
Button button
=
(Button)findViewById(R.id.bind);
button.setOnClickListener(mBindListener);
button
=
(Button)findViewById(R.id.unbind);
button.setOnClickListener(mUnbindListener);
mKillButton
=
(Button)findViewById(R.id.kill);
mKillButton.setOnClickListener(mKillListener);
mKillButton.setEnabled(
false
);
mCallbackText
=
(TextView)findViewById(R.id.callback);
mCallbackText.setText(
"
Not attached.
"
);
}
/**
* Class for interacting with the main interface of the service.
*/
private
ServiceConnection mConnection
=
new
ServiceConnection() {
public
void
onServiceConnected(ComponentName className, IBinder service) {
//
This is called when the connection with the service has been
//
established, giving us the service object we can use to
//
interact with the service. We are communicating with our
//
service through an IDL interface, so get a client-side
//
representation of that from the raw service object.
mService
=
IRemoteService.Stub.asInterface(service);
mKillButton.setEnabled(
true
);
mCallbackText.setText(
"
Attached.
"
);
//
We want to monitor the service for as long as we are
//
connected to it.
try
{
mService.registerCallback(mCallback);
}
catch
(RemoteException e) {
//
In this case the service has crashed before we could even
//
do anything with it; we can count on soon being
//
disconnected (and then reconnected if it can be restarted)
//
so there is no need to do anything here.
}
//
As part of the sample, tell the user what happened.
Toast.makeText(Binding.
this
, R.string.remote_service_connected,
Toast.LENGTH_SHORT).show();
}
public
void
onServiceDisconnected(ComponentName className) {
//
This is called when the connection with the service has been
//
unexpectedly disconnected -- that is, its process crashed.
mService
=
null
;
mKillButton.setEnabled(
false
);
mCallbackText.setText(
"
Disconnected.
"
);
//
As part of the sample, tell the user what happened.
Toast.makeText(Binding.
this
, R.string.remote_service_disconnected,
Toast.LENGTH_SHORT).show();
}
};
/**
* Class for interacting with the secondary interface of the service.
*/
private
ServiceConnection mSecondaryConnection
=
new
ServiceConnection() {
public
void
onServiceConnected(ComponentName className, IBinder service) {
//
Connecting to a secondary interface is the same as any
//
other interface.
mSecondaryService
=
ISecondary.Stub.asInterface(service);
mKillButton.setEnabled(
true
);
}
public
void
onServiceDisconnected(ComponentName className) {
mSecondaryService
=
null
;
mKillButton.setEnabled(
false
);
}
};
private
OnClickListener mBindListener
=
new
OnClickListener() {
public
void
onClick(View v) {
//
Establish a couple connections with the service, binding
//
by interface names. This allows other applications to be
//
installed that replace the remote service by implementing
//
the same interface.
bindService(
new
Intent(IRemoteService.
class
.getName()),
mConnection, Context.BIND_AUTO_CREATE);
bindService(
new
Intent(ISecondary.
class
.getName()),
mSecondaryConnection, Context.BIND_AUTO_CREATE);
mIsBound
=
true
;
mCallbackText.setText(
"
Binding.
"
);
}
};
private
OnClickListener mUnbindListener
=
new
OnClickListener() {
public
void
onClick(View v) {
if
(mIsBound) {
//
If we have received the service, and hence registered with
//
it, then now is the time to unregister.
if
(mService
!=
null
) {
try
{
mService.unregisterCallback(mCallback);
}
catch
(RemoteException e) {
//
There is nothing special we need to do if the service
//
has crashed.
}
}
//
Detach our existing connection.
unbindService(mConnection);
unbindService(mSecondaryConnection);
mKillButton.setEnabled(
false
);
mIsBound
=
false
;
mCallbackText.setText(
"
Unbinding.
"
);
}
}
};
private
OnClickListener mKillListener
=
new
OnClickListener() {
public
void
onClick(View v) {
//
To kill the process hosting our service, we need to know its
//
PID. Conveniently our service has a call that will return
//
to us that information.
if
(mSecondaryService
!=
null
) {
try
{
int
pid
=
mSecondaryService.getPid();
//
Note that, though this API allows us to request to
//
kill any process based on its PID, the kernel will
//
still impose standard restrictions on which PIDs you
//
are actually able to kill. Typically this means only
//
the process running your application and any additional
//
processes created by that app as shown here; packages
//
sharing a common UID will also be able to kill each
//
other's processes.
Process.killProcess(pid);
mCallbackText.setText(
"
Killed service process.
"
);
}
catch
(RemoteException ex) {
//
Recover gracefully from the process hosting the
//
server dying.
//
Just for purposes of the sample, put up a notification.
Toast.makeText(Binding.
this
,
R.string.remote_call_failed,
Toast.LENGTH_SHORT).show();
}
}
}
};
//
----------------------------------------------------------------------
//
Code showing how to deal with callbacks.
//
----------------------------------------------------------------------
/**
* This implementation is used to receive callbacks from the remote
* service.
*/
private
IRemoteServiceCallback mCallback
=
new
IRemoteServiceCallback.Stub() {
/**
* This is called by the remote service regularly to tell us about
* new values. Note that IPC calls are dispatched through a thread
* pool running in each process, so the code executing here will
* NOT be running in our main thread like most other things -- so,
* to update the UI, we need to use a Handler to hop over there.
*/
public
void
valueChanged(
int
value) {
mHandler.sendMessage(mHandler.obtainMessage(BUMP_MSG, value,
0
));
}
};
private
static
final
int
BUMP_MSG
=
1
;
private
Handler mHandler
=
new
Handler() {
@Override
public
void
handleMessage(Message msg) {
switch
(msg.what) {
case
BUMP_MSG:
mCallbackText.setText(
"
Received from service:
"
+
msg.arg1);
break
;
default
:
super
.handleMessage(msg);
}
}
};
}