- Hadoop、Hive、Hbase集群间的数据迁移
这个操蛋的人生!!!
一、hadoop集群间拷贝数据:迁移之前需要把两个集群的所有节点都互通/etc/hosts文件(重要,包括各个数据节点)两个集群版本不相同hadoopdistcphftp://192.168.57.73:50070/hive3/20171008/hive3/如果两个集群的版本相同,则可以使用hdfs协议,命令如下:hadoopdistcphdfs://namenodeip:9000/foohdfs
- hive数据操作,导入导出
qzWsong
hive
数据导入导出将数据文件导入hive的表方式1:导入数据的一种方式:手动用hdfs命令,将文件放入表目录;方式2:在hive的交互式shell中用hive命令来导入本地数据到表目录hive>loaddatalocalinpath'/root/order.data.2'intotablet_order;方式3:用hive命令导入hdfs中的数据文件到表目录hive>loaddatainpath'/ac
- 【大数据入门核心技术-Hive】(十六)hive表加载csv格式数据或者json格式数据
forest_long
大数据技术入门到21天通关大数据hivehadoop开发语言后端数据仓库
一、环境准备hive安装部署参考:【大数据入门核心技术-Hive】(三)Hive3.1.2非高可用集群搭建【大数据入门核心技术-Hive】(四)Hive3.1.2高可用集群搭建二、hive加载Json格式数据1、数据准备vistu.json[{"id":111,"name":"name111"},{"id":222,"name":"name22"}]上传到hdfshadoopfs-putstu.j
- Hadoop 与 Spark:大数据处理的比较
王子良.
大数据经验分享hadoopspark大数据
欢迎来到我的博客!非常高兴能在这里与您相遇。在这里,您不仅能获得有趣的技术分享,还能感受到轻松愉快的氛围。无论您是编程新手,还是资深开发者,都能在这里找到属于您的知识宝藏,学习和成长。博客内容包括:Java核心技术与微服务:涵盖Java基础、JVM、并发编程、Redis、Kafka、Spring等,帮助您全面掌握企业级开发技术。大数据技术:涵盖Hadoop(HDFS)、Hive、Spark、Fli
- Hive(11):Transactional Tables事务表
不死鸟.亚历山大.狼崽子
hivehivehadoop数据仓库
1Hive事务背景知识Hive本身从设计之初时,就是不支持事务的,因为Hive的核心目标是将已经存在的结构化数据文件映射成为表,然后提供基于表的SQL分析处理,是一款面向分析的工具。且映射的数据通常存储于HDFS上,而HDFS是不支持随机修改文件数据的。这个定位就意味着在早期的Hive的SQL语法中是没有update,delete操作的,也就没有所谓的事务支持了,因为都是select查询分析操作。
- Hadoop分布式文件系统-HDFS架构
Fancs2024
hadoophadoophdfs
一、HDFS的简介HDFS全称HadoopDistributedFileSystem,是分布式文件管理系统。主要是为了解决大数据如何存储的问题,跟一般文件系统不同的是,它可以通过扩展服务器结点来扩充存储量,可以用低成本的硬件构建出支持高吞吐量的文件系统。二、HDFS的特点高容错性:一个HDFS集群会包含非常多的结点,HDFS将文件分块存储,并且会保存多个副本到不同的机器节点上以保证数据的安全,而且
- 基于MRS-Hudi构建数据湖的典型应用场景介绍
华为云技术精粹
云计算华为云
一、传统数据湖存在的问题与挑战传统数据湖解决方案中,常用Hive来构建T+1级别的数据仓库,通过HDFS存储实现海量数据的存储与水平扩容,通过Hive实现元数据的管理以及数据操作的SQL化。虽然能够在海量批处理场景中取得不错的效果,但依然存在如下现状问题:问题一:不支持事务由于传统大数据方案不支持事务,有可能会读到未写完成的数据,造成数据统计错误。为了规避该问题,通常控制读写任务顺序调用,在保证写
- 深入MapReduce——引入
黄雪超
大数据基础#深入MapReducemapreduce大数据hadoop
引入前面我们已经深入了HDFS的设计与实现,对于分布式系统也有了不错的理解。但HDFS仅仅解决了海量数据存储和读写的问题。但要想让数据产生价值,一定是需要从数据中挖掘出价值才行,这就需要我们拥有海量数据的计算处理能力。下面我们还是老样子,来数据一下要实现海量计算处理能力,有些什么核心痛点大数据计算核心痛点量级大在稍微大一点的互联网企业,需要计算处理的数据量都开始以PB计了。而传统的计算处理模型中,
- HUDI-0.11.0 BUCKET index on Flink 特性试用
_Magic
BigDataflinkhudi
1.背景在0.10.1版本下,使用默认的index(FLINK_STATE),在upsert模式下,几十亿级别的数据更新会消耗大量内存,并且检查点(checkpoint)时间过长。因此,切换到0.11.0的BUCKET索引。当前环境:Flink1.13.2+Hudi0.11.0(master2022.04.11)+COW+HDFS。关键配置项:index.type=BUCKEThoodie.buc
- Hadoop是什么,怎么部署安装?
狮歌~资深攻城狮
hadoop大数据分布式
Hadoop是什么?Hadoop是一个由Apache基金会开发的开源分布式系统基础架构,主要用于处理和存储大规模数据集。它包括两个核心组件:Hadoop分布式文件系统(HDFS)和HadoopYARN(YetAnotherResourceNegotiator)。HDFS提供了一个高吞吐量的数据访问接口,允许用户在集群中存储大量数据。它通过将文件分割成多个块并分布在集群的不同节点上来实现高可靠性和可
- 分布式存储的技术选型之HDFS、Ceph、MinIO对比
Linux运维老纪
勇敢向前迎接运维开发之挑战分布式hdfsceph云原生运维开发大数据云计算
分布式存储的技术选型比:HDFS、Ceph、MinIO对比一文读懂分布式存储在当今数字化时代,数据呈爆炸式增长,分布式存储技术应运而生,成为大数据存储与管理的得力助手。它将数据分散存于多台独立设备,构建起一个庞大而可靠的虚拟存储体系,有效突破了传统集中式存储的性能瓶颈,大幅提升了可靠性、可用性及存取效率,轻松应对海量数据的存储挑战。分布式存储的应用场景极为广泛。在大数据处理领域,如互联网公司应对海
- HDFS Disk Balancer 介绍&使用
_Magic
BigDatahdfshadoop大数据
一、介绍一句话介绍:用于HDFSDataNode单节点内多个数据盘数据均衡。官网介绍如下:Diskbalancerisacommandlinetoolthatdistributesdataevenlyonalldisksofadatanode.ThistoolisdifferentfromBalancerwhichtakescareofcluster-widedatabalancing.Datac
- hadoop常用命令
我要用代码向我喜欢的女孩表白
hadoopnpm大数据
Yarn查看提交到资源调度器的任务(任何用yarn资源的都可以看,比如spark、tez、mapreduce)看正在运行的yarn任务yarnapplication-list杀死对应的yarn任务yarnapplication-kill{application_Id}(id可以通过-list看到)hdfs查看hdfs目录hdfsdfs-ls/(查看本集群的目录)hdfsdfs-lshdfs://i
- flume系列之:flume落cos
快乐骑行^_^
日常分享专栏flume系列
flume系列之:flume落cos一、参考文章二、安装cosjar包三、添加hadoop-cos的相关配置四、flume环境添加hadoop类路径五、使用cos路径六、启动/重启flume一、参考文章Kafka数据通过Flume存储到HDFS或COSflumetocos使用指南二、安装cosjar包将对应hadoop版本的hadoop-cos的jar包(hadoop-cos-{hadoop.ve
- Hadoop 和 Spark 的内存管理机制分析
王子良.
经验分享hadoopspark大数据
欢迎来到我的博客!非常高兴能在这里与您相遇。在这里,您不仅能获得有趣的技术分享,还能感受到轻松愉快的氛围。无论您是编程新手,还是资深开发者,都能在这里找到属于您的知识宝藏,学习和成长。博客内容包括:Java核心技术与微服务:涵盖Java基础、JVM、并发编程、Redis、Kafka、Spring等,帮助您全面掌握企业级开发技术。大数据技术:涵盖Hadoop(HDFS)、Hive、Spark、Fli
- 大数据学习(五):如何使用 Livy提交spark批量任务--转载
zuoseve01
livy
Livy是一个开源的REST接口,用于与Spark进行交互,它同时支持提交执行代码段和完整的程序。Livy封装了spark-submit并支持远端执行。启动服务器执行以下命令,启动livy服务器。./bin/livy-server这里假设spark使用yarn模式,所以所有文件路径都默认位于HDFS中。如果是本地开发模式的话,直接使用本地文件即可(注意必须配置livy.conf文件,设置livy.
- hive小文件合并机制_hive小文件的问题弊端以及合并
做生活的创作者
hive小文件合并机制
小文件的弊端1、HDFS中每个文件的元数据信息,包括位置大小分块信息等,都保存在NN内存中,在小文件数较多的情况下,会造成占用大量内存空间,导致NN性能下降;2、在读取小文件多的目录时,MR会产生更多map数,造成GC频繁,浪费集群资源;3、现在大数据平台文件总数超过30亿,单个NS文件数超过4亿的时候,读写性能会急剧下降,影响到所有读写该NS的任务性能;4、如果队列限制最大map数是20000,
- Java 大视界 -- 解锁 Java 与 Hadoop HDFS 交互的高效编程之道(二)
青云交
大数据新视界Java大视界HDFSJava流代码示例性能优化读写操作大数据Hadoopjava
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 使用 Hadoop 实现大数据的高效存储与查询
王子良.
经验分享大数据hadoop分布式
欢迎来到我的博客!非常高兴能在这里与您相遇。在这里,您不仅能获得有趣的技术分享,还能感受到轻松愉快的氛围。无论您是编程新手,还是资深开发者,都能在这里找到属于您的知识宝藏,学习和成长。博客内容包括:Java核心技术与微服务:涵盖Java基础、JVM、并发编程、Redis、Kafka、Spring等,帮助您全面掌握企业级开发技术。大数据技术:涵盖Hadoop(HDFS)、Hive、Spark、Fli
- hdfs和hive对于小文件的处理方案
二进制_博客
大数据
一、hdfs如何处理小文件小文件问题的危害小文件问题对HDFS的性能和稳定性产生显著影响,主要包括:占用过多的存储空间:每个小文件都会占用一个独立的Block,导致存储资源的浪费。降低数据处理效率:HDFS是为处理大文件而设计的,小文件会导致大量的Map任务启动,增加处理时间和资源消耗。NameNode内存压力增大:NameNode需要维护所有文件和目录的元数据信息,小文件过多会导致NameNod
- 大数据-257 离线数仓 - 数据质量监控 监控方法 Griffin架构
武子康
大数据离线数仓大数据数据仓库java后端hadoophive
点一下关注吧!!!非常感谢!!持续更新!!!Java篇开始了!目前开始更新MyBatis,一起深入浅出!目前已经更新到了:Hadoop(已更完)HDFS(已更完)MapReduce(已更完)Hive(已更完)Flume(已更完)Sqoop(已更完)Zookeeper(已更完)HBase(已更完)Redis(已更完)Kafka(已更完)Spark(已更完)Flink(已更完)ClickHouse(已
- pyspark 中删除hdfs的文件夹
TDengine (老段)
大数据sparkhadoophdfsmapreduce
在pyspark中保存rdd的内存到文件的时候,会遇到文件夹已经存在而失败,所以如果文件夹已经存在,需要先删除。搜索了下资料,发现pyspark并没有提供直接管理hdfs文件系统的功能。寻找到一个删除的方法,是通过调用shell命令hadoopfs-rm-f来删除,这个方法感觉不怎么好,所以继续找。后来通过查找hadoophdfs的源代码发现hdfs是通过java的包org.appache.had
- Python 爬虫:获取网页数据的 5 种方法
王子良.
经验分享pythonpython开发语言爬虫
欢迎来到我的博客!非常高兴能在这里与您相遇。在这里,您不仅能获得有趣的技术分享,还能感受到轻松愉快的氛围。无论您是编程新手,还是资深开发者,都能在这里找到属于您的知识宝藏,学习和成长。博客内容包括:Java核心技术与微服务:涵盖Java基础、JVM、并发编程、Redis、Kafka、Spring等,帮助您全面掌握企业级开发技术。大数据技术:涵盖Hadoop(HDFS)、Hive、Spark、Fli
- 采用海豚调度器+Doris开发数仓保姆级教程(满满是踩坑干货细节,持续更新)
大模型大数据攻城狮
海豚调度器从入门到精通doris海豚调度器离线数仓实时数仓国产代替信创大数据flink数仓
目录一、采用海豚调度器+Doris开发平替CDHHdfs+Yarn+Hive+Oozie的理由。1.架构复杂性2.数据处理性能3.数据同步与更新4.资源利用率与成本6.生态系统与兼容性7.符合信创或国产化要求二、ODS层接入数据接入kafka实时数据踩坑的问题细节三、海豚调度器调度Doris进行报表开发创建带分区的表在doris进行开发调试开发海豚调度器脚本解决shell脚本使用MySQL命令行给
- 深入HDFS——DataNode启动源码
黄雪超
大数据基础#深入HDFShdfshadoop大数据
引入上一篇我们看完了NameNode的启动源码,对于NameNode我们已经很熟悉了,今天我们接着来看看它的“得力干将”——DataNode。首先,自然还是从元数据管理篇提到的DataNode类(org.apache.hadoop.hdfs.server.datanode.DataNode)开始。不过在深入启动源码前,我们先看看它的源码注释:DataNodeisaclass(andprogram)
- 深入HDFS——NameNode启动源码
黄雪超
大数据基础#深入HDFShdfshadoop大数据
引入前面我们已经对HDFS有了很多了解,但是光说不练假把式,今天开启深入源码的纯享模式,先来看看NameNode启动流程,在代码层面,到底是如何实现的。首先还是得从我们的前一篇提到过的NameNode类(org.apache.hadoop.hdfs.server.namenode.NameNode)开始,既然是看启动流程,那自然是先找类里面的main方法啦。当我们启动NameNode的时候,它就会
- Spring Boot 和微服务:快速入门指南
王子良.
Java经验分享springboot微服务后端
欢迎来到我的博客!非常高兴能在这里与您相遇。在这里,您不仅能获得有趣的技术分享,还能感受到轻松愉快的氛围。无论您是编程新手,还是资深开发者,都能在这里找到属于您的知识宝藏,学习和成长。博客内容包括:Java核心技术与微服务:涵盖Java基础、JVM、并发编程、Redis、Kafka、Spring等,帮助您全面掌握企业级开发技术。大数据技术:涵盖Hadoop(HDFS)、Hive、Spark、Fli
- HDFS 在上传文件的时候,如果其中一个 DataNode 突然挂掉了怎么办? 思维导图 代码示例(java 架构)
用心去追梦
hdfsjava架构
当在HDFS中上传文件时,如果其中一个DataNode突然挂掉,HDFS有内置的机制来确保数据的完整性和可靠性。以下是详细的处理流程、Java架构代码示例以及创建思维导图的建议。HDFS上传文件时遇到DataNode故障的处理1.检测DataNode故障心跳机制:每个DataNode定期向NameNode发送心跳信号。如果NameNode在一段时间内没有收到某个DataNode的心跳,它会将该节点
- 初学者如何用 Python 写第一个爬虫?
王子良.
python经验分享python开发语言爬虫
欢迎来到我的博客!非常高兴能在这里与您相遇。在这里,您不仅能获得有趣的技术分享,还能感受到轻松愉快的氛围。无论您是编程新手,还是资深开发者,都能在这里找到属于您的知识宝藏,学习和成长。博客内容包括:Java核心技术与微服务:涵盖Java基础、JVM、并发编程、Redis、Kafka、Spring等,帮助您全面掌握企业级开发技术。大数据技术:涵盖Hadoop(HDFS)、Hive、Spark、Fli
- nosql数据库技术与应用知识点
皆过客,揽星河
NoSQLnosql数据库大数据数据分析数据结构非关系型数据库
Nosql知识回顾大数据处理流程数据采集(flume、爬虫、传感器)数据存储(本门课程NoSQL所处的阶段)Hdfs、MongoDB、HBase等数据清洗(入仓)Hive等数据处理、分析(Spark、Flink等)数据可视化数据挖掘、机器学习应用(Python、SparkMLlib等)大数据时代存储的挑战(三高)高并发(同一时间很多人访问)高扩展(要求随时根据需求扩展存储)高效率(要求读写速度快)
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要