一、目标
现在很多程序利用ollvm的控制流平坦化来增加逆向分析的难度。 控制流平坦化 (control flow flattening)的基本思想主要是通过一个主分发器来控制程序基本块的执行流程,例如下图是正常的执行流程
经过控制流平坦化后的执行流程就如下图:
这样可以模糊基本块之间的前后关系,增加程序分析的难度。
二、分析
这里我们以 check_passwd_arm_flat 为例来尝试恢复被ollvm混淆后的程序。先拖进ida,从流程图上可以看到典型的 控制流平台化 之后的结果:
恢复的流程是 分块→找出真实块→确定真实块之间的调用关系→Patch二进制程序
分块
分块我们使用 angr 来实现。
filename = "./check_passwd_arm_flat"
start_addr = 0x83B0
end_addr = 0x87D4
project = angr.Project(filename, load_options={'auto_load_libs': False})
print(hex(project.entry))
cfg = project.analyses.CFGFast(regions=[(start_addr,end_addr)],normalize='True',force_complete_scan=False)
target_function = cfg.functions.get(start_addr)
#将angr的cfg转化为转化为类似ida的cfg
supergraph = am_graph.to_supergraph(target_function.transition_graph)
找出真实块、序言、retn块和无用块
- 函数的开始地址为序言块的地址
- 无后继的块为retn块
# get prologue_node and retn_node
prologue_node = None
for node in supergraph.nodes():
if supergraph.in_degree(node) == 0:
prologue_node = node
if supergraph.out_degree(node) == 0 and len(node.out_branches) == 0:
retn_node = node
print("序言块={},retn块={}".format(hex(prologue_node.addr),hex(retn_node.addr)))
在本例中,真实块的特点如下:
- 序言的后继为主分发器
- 后继为主分发器的块为预处理器
- 后继为预处理器的块为真实块
- 剩下的为无用块
Tip:
在实战中,需要具体分析出 主分发器, 不一定序言块之后的就一定是主分发器,也不一定存在预处理器。
def get_relevant_nop_nodes(supergraph, main_dispatcher_node, prologue_node, retn_node):
# relevant_nodes = list(supergraph.predecessors(pre_dispatcher_node))
relevant_nodes = []
nop_nodes = []
for node in supergraph.nodes():
# print(hex(node.addr))
# 和主分发器有联系,并且size大于8的,认为是真实块
if supergraph.has_edge(node, main_dispatcher_node) and node.size > 8:
# XXX: use node.size is faster than to create a block
relevant_nodes.append(node)
# print(hex(node.addr))
continue
if node.addr in (prologue_node.addr, retn_node.addr, main_dispatcher_node.addr):
continue
# 非真实块的默认要干掉
nop_nodes.append(node)
return relevant_nodes, nop_nodes
输出结果:
******************* 真实块 ************************
序言块: 0x83b0
主分发器: 0x87d0
retn块: 0x87c0
真实块: ['0x875c', '0x86f4', '0x8794', '0x8658', '0x8628', '0x8714', '0x86d4', '0x87ac', '0x8770', '0x8694', '0x864c', '0x8734', '0x8788', '0x86b0', '0x867c']
确定真实块之间的调用关系
网上确定真实块之间的调用关系大多都是用 angr 的符号执行来实现,不过angr是个强大的工程,强练容易走火入魔,需要从基础练起。 无名侠 提供了一个Unicorn模拟执行的思路来寻找两个真实块的关系。所以本文使用Unicorn来确定真实块之前的调用关系。
我们只想得到ollvm路径,而不是真实代码块的运行结果,因此要尽可能屏蔽非ollvm的内存操作。具体屏蔽方法稍后介绍。下面这段代码初始化Unicorn的虚拟CPU,并映射程序代码内存以及栈空间,最后调用hook_add设置UC_HOOK_CODE和UC_HOOK_MEM_UNMAPPED的事件回调。UC_HOOK_CODE回调会在每条指令执行前被调用,UC_HOOK_MEM_UNMAPPED会在内存异常的时候调用。
# 初始化
load_base = 0
emu = Uc(UC_ARCH_ARM, UC_MODE_ARM | UC_MODE_LITTLE_ENDIAN)
# 映射代码段 0x8000是 check_passwd_arm_flat 代码段的基址
emu.mem_map(0x8000, 4 * 1024 * 1024)
emu.mem_write(0x8000,binByte)
STACK_ADDR = 0x7F000000
STACK_SIZE = 1024 * 1024
start_addr = None
emu.mem_map(STACK_ADDR, STACK_SIZE)
emu.hook_add(UC_HOOK_CODE, hook_code)
emu.hook_add(UC_HOOK_MEM_UNMAPPED,hook_mem_access)
真实块之间的关系有两种:1、顺序 2、分支,针对本文的例子,真实块里面的分支指令有 moveq movne movlt movgt,是时候祭出这个表了:
条件后缀 | 标志寄存器 | 含义 |
---|---|---|
EQ | Z == 1 | 等于 |
NE | Z == 0 | 不等于 |
CS/HS | C == 1 | 无符号大于或相同 |
CC/LO | C == 0 | 无符号小于 |
MI | N == 1 | 负数 |
PL | N == 0 | 整数或零 |
VS | V == 1 | 溢出 |
VC | V == 0 | 无溢出 |
HI | C == 1 and Z == 0 | 无符号大于 |
LS | C == 1 or Z == 0 | 无符号小于或相同 |
GE | N == V | 有符号大于或等于 |
LT | N != V | 有符号小于 |
GT | Z == 0 and N == V | 有符号大于 |
LE | Z == 1 or N != V | 有符号小于或等于 |
AL | 任何 | 始终。不可用于B{cond}中 |
Tip:
分支指令需要具体情况具体分析,没有通用一劳永逸的解决。除非多费点功夫把所有的分支指令都处理一遍。我怀疑angr的符号执行就是把这个活给干了。
# 分支处理
if ins.mnemonic != 'mov' and ins.mnemonic.startswith('mov'):
print(">>> branch 0x%x:t%st%s" %(ins.address, ins.mnemonic, ins.op_str))
if branch_control == 1 :
vZ = (uc.reg_read(UC_ARM_REG_CPSR) & 0x40000000) >> 30
vN = (uc.reg_read(UC_ARM_REG_CPSR) & 0x80000000) >> 31
vV = (uc.reg_read(UC_ARM_REG_CPSR) & 0x10000000) >> 28
if ins.mnemonic == 'moveq' or ins.mnemonic == 'movne' :
if vZ == 0:
uc.reg_write(UC_ARM_REG_CPSR,uc.reg_read(UC_ARM_REG_CPSR) | 0x40000000)
print("Z 0->1 change cpsr = 0x%x" % uc.reg_read(UC_ARM_REG_CPSR))
else:
uc.reg_write(UC_ARM_REG_CPSR,uc.reg_read(UC_ARM_REG_CPSR) & 0xBFFFFFFF)
print("Z 1->0 change cpsr = 0x%x" % uc.reg_read(UC_ARM_REG_CPSR))
elif ins.mnemonic == 'movgt':
if vZ == 0 and vN == vV:
uc.reg_write(UC_ARM_REG_CPSR,uc.reg_read(UC_ARM_REG_CPSR) | 0x40000000)
print("GT 0->1 change cpsr = 0x%x" % uc.reg_read(UC_ARM_REG_CPSR))
else:
uc.reg_write(UC_ARM_REG_CPSR,uc.reg_read(UC_ARM_REG_CPSR) & 0x2FFFFFFF)
print("GT 1->0 change cpsr = 0x%x" % uc.reg_read(UC_ARM_REG_CPSR))
elif ins.mnemonic == 'movlt':
if vN != vV :
uc.reg_write(UC_ARM_REG_CPSR,uc.reg_read(UC_ARM_REG_CPSR) & 0x6FFFFFFF)
print("lt != -> = change cpsr = 0x%x" % uc.reg_read(UC_ARM_REG_CPSR))
else:
uc.reg_write(UC_ARM_REG_CPSR,uc.reg_read(UC_ARM_REG_CPSR) & 0xEFFFFFFF)
print("lt = -> != change cpsr = 0x%x" % uc.reg_read(UC_ARM_REG_CPSR))
else:
print(">>> None " + ins.mnemonic)
启动虚拟机的函数叫find_path,用于寻找真实块的下一个代码块。branch为分支控制。 如果branch = 1,则虚拟机在遇到movxx指令的时候会走movxx条件分支。
def find_path(uc,start_addr,branch = None):
global block_startaddr
global distAddr
global isSucess
global branch_control
try:
block_startaddr = start_addr
isSucess = False
distAddr = 0
branch_control = branch
uc.emu_start(start_addr,0x10000)
print("emu end..")
except UcError as e:
pc = uc.reg_read(UC_ARM_REG_PC)
if pc != 0:
print("find_path UcError: %s pc:%x" % (e,pc))
return None
else:
print("find_path ERROR: %s pc:%x" % (e,pc))
if isSucess:
return distAddr
return None
控制流集成 使用队列的方式来路径搜索,起始搜索从函数入口开始。函数入口根据offset变量指定。 queue中的元素是一个二元组,第一项为执行地址,第二项为寄存器环境。每次搜索开始的时候从queue中获取一个将要搜索的真实块,设置寄存器,调用find_path搜索下一个真实块,将搜索到的真实块与新寄存器放入队列(保证上下文完整)使用这样做的好处就是可以搜索任意队列中的代码块,并且寄存器环境一定是和该代码块一致的。
queue = [(push_entry,None)]
flow = defaultdict(list)
patch_instrs = {}
while len(queue) != 0:
env = queue.pop()
pc = env[0]
set_context(emu,env[1])
if pc in flow:
#print "???"
continue
flow[pc] = []
print('------------------- run %#x---------------------' % pc)
block = project.factory.block(pc)
has_branches = False
# 寻找有分支的代码块
for ins in block.capstone.insns:
if ins.insn.mnemonic != 'mov' and ins.insn.mnemonic.startswith('mov'):
if pc not in patch_instrs:
patch_instrs[pc] = ins
has_branches = True
if has_branches:
# 有分支的代码块跑两次,一次正常,一次分支
ctx = get_context(emu)
p1 = find_path(emu,pc,0)
if p1 != None:
queue.append((p1,get_context(emu)))
flow[pc].append(p1)
set_context(emu,ctx)
p2 = find_path(emu,pc,1)
if p1 == p2:
p2 = None
if p2 != None:
queue.append((p2,get_context(emu)))
flow[pc].append(p2)
else:
p = find_path(emu,pc)
if p != None:
queue.append((p,get_context(emu)))
flow[pc].append(p)
print("Emulation arm code done")
路径探索,需要禁用掉一切函数调用、非栈空间内存访问,当虚拟机指令有内存操作需求时,判断目标内存地址范围是否在栈中,如果不在栈中则跳过该指令, 在本例中有一些内存访问代码段的固定值,这部分指令需要支持。 禁用的指令有bl、blx,只要识别bl前缀即可。
flag_pass = False
for b in ban_ins:
if ins.mnemonic.find(b) != -1:
flag_pass = True
break
if ins.op_str.find('[') != -1:
if ins.op_str.find('[sp') == -1:
flag_pass = True
for op in ins.operands:
# print(op.type)
if op.type == ARM_OP_MEM:
addr = 0
if op.value.mem.base != 0:
addr += uc.reg_read(reg_ctou(ins.reg_name(op.value.mem.base)))
elif op.value.index != 0:
addr += uc.reg_read(reg_ctou(ins.reg_name(op.value.mem.index)))
elif op.value.disp != 0:
addr += op.value.disp
# 内存操作在栈区域
if addr >= 0x7F000000 and addr < 0x7F000000 + 1024 * 1024 :
flag_pass = False
# 内存操作在代码区域
if addr >= 0x8000 and addr < 0x9000:
flag_pass = False
if flag_pass:
print("will pass 0x%x:t%st%s" %(ins.address, ins.mnemonic, ins.op_str))
uc.reg_write(UC_ARM_REG_PC, address + size)
return
最后打印出找到的真实块之前的调用关系
************************flow******************************
0x83b0: ['0x8628']
0x8628: ['0x864c', '0x8658']
0x8658: ['0x867c']
0x867c: ['0x8628']
0x864c: ['0x8694']
0x8694: ['0x8794', '0x86b0']
0x86b0: ['0x8788', '0x86d4']
0x86d4: ['0x8788', '0x86f4']
0x86f4: ['0x8714', '0x8788']
0x8788: ['0x87ac']
0x87ac: ['0x87c0']
0x87c0: []
0x8714: ['0x8788', '0x8734']
0x8734: ['0x8770', '0x875c']
0x875c: ['0x87c0']
0x8770: ['0x8788']
0x8794: ['0x87ac']
Patch二进制程序
首先把无用块都改成nop指令
for nop_node in nop_nodes:
fill_nop(origin_data, nop_node.addr-base_addr,nop_node.size, project.arch)
然后针对没有产生分支的真实块把最后一条指令改成jmp指令跳转到下一真实块
print("{} jmp {}".format(hex(parent),hex(childs[0])) )
# 把最后一条指令改成jmp指令跳转到下一真实块
parent_block = project.factory.block(parent)
last_instr = parent_block.capstone.insns[-1]
file_offset = last_instr.address - base_addr
patch_value = ins_b_jmp_hex_arm(last_instr.address, childs[0], 'b') if project.arch.memory_endness == "Iend_BE": patch_value = patch_value[::-1] patch_instruction(origin_data, file_offset, patch_value)
针对产生分支的真实块把MOVX指令改成相应的条件跳转指令跳向符合条件的分支,例如moveq 改成beq ,再在这条之后添加b 指令跳向另一分支
instr = patch_instrs[parent]
# print("0x%x: %s t%st%s" % (instr.insn.address,getByteStr(instr.insn.bytes), instr.insn.mnemonic, instr.insn.op_str))
file_offset = instr.insn.address - base_addr
parent_block = project.factory.block(parent)
fill_nop(origin_data, file_offset, parent_block.addr + parent_block.size - base_addr - file_offset, project.arch)
# patch the movx instruction to bx instruction
bx_cond = 'b' + instr.insn.mnemonic[len('mov'):]
patch_value = ins_b_jmp_hex_arm(instr.insn.address, childs[0], bx_cond)
if project.arch.memory_endness == 'Iend_BE':
patch_value = patch_value[::-1]
patch_instruction(origin_data, file_offset, patch_value)
file_offset += 4
# patch the next instruction to b instrcution
patch_value = ins_b_jmp_hex_arm(instr.insn.address+4, childs[1], 'b')
if project.arch.memory_endness == 'Iend_BE':
patch_value = patch_value[::-1]
patch_instruction(origin_data, file_offset, patch_value)
最后用ida查看修复之后的cfg
可以看到CFG跟原来的大致一样,然后反编译恢复出原始代码
bool __fastcall check_password(_BYTE *a1) {
int v2; // [sp+18h] [bp-10h]
int i; // [sp+1Ch] [bp-Ch]
v2 = 0;
for ( i = 0; a1[i]; ++i )
v2 += (unsigned __int8)a1[i];
return i == 4
&& v2 == 0x1A1
&& (signed int)(unsigned __int8)a1[3] > 'c'
&& (signed int)(unsigned __int8)a1[3] >= 'e'
&& *a1 == 'b'
&& ((unsigned __int8)a1[3] ^ 0xD) == (unsigned __int8)a1[1];
}
三、总结
本文主要针对arm架构下Obfuscator-LLVM的控制流平坦化,重要的是采用unicorn模拟执行来确定真实块的关系。
参考:
https://bbs.pediy.com/thread-252321.htm ARM64 OLLVM反混淆[无名侠]
https://security.tencent.com/index.php/blog/msg/112 利用符号执行去除控制流平坦化