Description
Input
Output
Sample Input
1 7 0 0 2 2 1 0 2 1 6 2 2 0 4 2 1 1 2 4 4 2 1 4 3 6 1 4 0 6 4 1 3 4 6 6 2
Sample Output
3
思路:
1. 拓扑排序加深搜
2. 拓扑排序加广搜
3. 状态压缩DP. 设 dp[s][i] 表示当前状态为 s 时, 刚画完第 i 个矩形所用的最少画笔数. s = [1, 1<<15), s 的二进制表示中, 第 i 位 为1 表示第 i 个矩形已经被涂完色.
dp[news][i] = min(dp[news][i], dp[olds][j]+1) if color[i] != color[j]
= min(dp[olds][j]) if color[i] == color[j]
其中, news = (olds | 1<<i)
上述状态转移方程的意思是, 要计算 dp[s][i] 的值, 那么考虑当前所有 dp[olds][j], 其中 s = (olds|1<<i), 假如 j 的颜色和 i 的颜色相同, 这不需要另拿画笔, 否则, 画笔数加 1
当然, 对 i 进行涂色需要满足 i 的直接前驱都已被涂完
总结:
1. 这道题近似于暴力破解, 枚举所有状态集合的所有状态, 在某个状态 s 下, 以 s 中以涂色的某个矩形为支点来更新一个还未被涂色的点
2. 第 48 行代码错过一次, 把 i 写成了 j
3. 第 45 行很精髓, 我本打算用一个 for 循环进行判断的
4. 第 44, 48 行, 体现了 (1) 的思想, 即以 k 为支点来更新 i
代码:
#include <iostream> using namespace std; class tangle { public: int x1, y1, x2, y2; int color; tangle(int _x1, int _y1, int _x2, int _y2):x1(_x1), y1(_y1), x2(_x2), y2(_y2) {} tangle() { tangle(0, 0, 0, 0); } }; const int INF = 0X3F3F3F3F; int M, N; tangle tangles[20]; int dp[1<<15][20]; int up[20]; bool isUpper(int i, int j) { if(tangles[i].x2 != tangles[j].x1) return false; if(tangles[i].y1 >= tangles[j].y2) return false; if(tangles[i].y2 <= tangles[j].y1) return false; return true; } void pre_process() { memset(up, 0, sizeof(up)); for(int i = 1; i <= N; i ++) { for(int j = 1; j <= N; j ++) { if(isUpper(i, j)) up[j] = (up[j]|(1<<(i-1))); } } memset(dp, 0x3f, sizeof(dp)); for(int i = 1; i <= N; i ++) if(up[i] == 0) dp[1<<(i-1)][i] = 1; } int mainFunc() { int END = (1<<N) -1; for(int s = 1; s <= END; s ++) { // 从状态 s 导出 dp[s][i], 当前 s 第 i 个矩形不能被涂色 for(int i = 1; i <= N; i ++) { // 将要给第 i 个矩形涂色 if(s&(1<<(i-1)) ) continue; // 状态 s 中, 对应第 i 个矩形已经被涂完了 if((s&up[i]) != up[i]) continue; // 确保 i 的直接前驱都已涂完颜色 for(int k = 1; k <= N; k ++) { if(!(s&(1<<(k-1)))) continue; int news = (s|1<<(i-1)); // update 新的 dp[][] if(tangles[i].color != tangles[k].color) dp[news][i] = min(dp[news][i], dp[s][k]+1); else dp[news][i] = min(dp[news][i], dp[s][k]); } } } int ans = INF; for(int i = 1; i <= N; i ++) { ans = min(ans, dp[END][i]); } return ans; } int main() { freopen("E:\\Copy\\ACM\\poj\\1691\\in.txt", "r", stdin); cin >> M; while( M -- >= 1) { cin >> N; for(int i = 1; i <= N; i ++) { scanf("%d%d%d%d%d", &tangles[i].x1, &tangles[i].y1, &tangles[i].x2, &tangles[i].y2, &tangles[i].color); } pre_process(); cout << mainFunc() << endl; } return 0; }