jdk1.8HashMap方法剖析

前言

​ HashMap是工作中常用的数据结构,网上关于HashMap源码的资料很多,但一直觉得如管中窥豹,对于HashMap的认知一直停留在表面,只知道概念而不知道过程。并且自己在看源码的过程中发现,网上部分博主的文档对源码的解析也是错误的,于是决定自己解读一次源码。

正文

HashMap属性:

    //默认初始容量(注意:必须为2的幂)
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    //最大容量,如果任意一个带有参数的构造函数指定更高的值,则使用此最大容量。
    //HashMap数组长度必须是2的幂次方且<= 1<<30
    static final int MAXIMUM_CAPACITY = 1 << 30;
    //在构造函数中未指定时使用的负载系数
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    //树化阈值:链表转成红黑树的阈值,在存储数据时,当链表长度 > 该值时,则将链表转换成红黑树
    static final int TREEIFY_THRESHOLD = 8;
    //树退化阈值:当在扩容(resize())时,在重新计算存储位置后,当原有的红黑树内数量 < 6时,则将 红黑树转换成链表
    static final int UNTREEIFY_THRESHOLD = 6;
    //最小树形化容量阈值:即 当哈希表中的容量 > 该值时,才允许树形化链表 (即 将链表 转换成红黑树)
    //否则,若桶内元素太多时,则直接扩容,而不是树形化
    //为了避免进行扩容、树形化选择的冲突,这个值不能小于 4 * TREEIFY_THRESHOLD
    static final int MIN_TREEIFY_CAPACITY = 64;

HashMap链表和红黑树结构:

Node:链表的结构

    static class Node<K, V> implements Map.Entry<K, V> {
     
        //节点的key值的hash值
        final int hash;
        //节点的key值
        final K key;
        //节点的value值
        V value;
        //下一个节点
        Node<K, V> next;

        Node(int hash, K key, V value, Node<K, V> next) {
     
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey() {
     
            return key;
        }

        public final V getValue() {
     
            return value;
        }

        public final String toString() {
     
            return key + "=" + value;
        }

        public final int hashCode() {
     
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
     
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
     
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
     
                Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
                if (Objects.equals(key, e.getKey()) &&
                        Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

TreeNode:双向链表+红黑树的数据结构

		/**
     * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
     * extends Node) so can be used as extension of either regular or
     * linked node.
     * 

* 双向链表+红黑树的数据结构 */ static final class TreeNode<K, V> extends LinkedHashMap.Entry<K, V> { //父节点 TreeNode<K, V> parent; // red-black tree links //左孩子节点 TreeNode<K, V> left; //右孩子节点 TreeNode<K, V> right; //双向链表结构下的上一个节点 TreeNode<K, V> prev; // needed to unlink next upon deletion //节点颜色 boolean red; //TreeNode 继承于LinkedHashMap.Entry,LinkedHashMap.Entry继承于HashMap.Node //TreeNode还有四个属性: // final int hash; hash值 // final K key; key值 // V value; value值 // Node next; 下一个节点 TreeNode(int hash, K key, V val, Node<K, V> next) { super(hash, key, val, next); } /** * Returns root of tree containing this node. */ final TreeNode<K, V> root() { for (TreeNode<K, V> r = this, p; ; ) { if ((p = r.parent) == null) return r; r = p; } } /** * Ensures that the given root is the first node of its bin. */ static <K, V> void moveRootToFront(Node<K, V>[] tab, TreeNode<K, V> root) { int n; if (root != null && tab != null && (n = tab.length) > 0) { //先获取table的下标 int index = (n - 1) & root.hash; //获取table下标的节点 TreeNode<K, V> first = (TreeNode<K, V>) tab[index]; //如果红黑树的根节点不是table[index]的节点 if (root != first) { Node<K, V> rn; //第一步将红黑树的根节点变成table[index]的节点 tab[index] = root; //第二步将红黑树的根节点变成双向链表的头节点 TreeNode<K, V> rp = root.prev; if ((rn = root.next) != null) ((TreeNode<K, V>) rn).prev = rp; if (rp != null) rp.next = rn; if (first != null) first.prev = root; root.next = first; root.prev = null; } //验证红黑树的准确性 assert:启动参数中加 -ae 才能生效 assert checkInvariants(root); } } /** * Finds the node starting at root p with the given hash and key. * The kc argument caches comparableClassFor(key) upon first use * comparing keys. * h:寻找的key的hash值 * k:寻找的key * kc:寻找的key的类 */ final TreeNode<K, V> find(int h, Object k, Class<?> kc) { //当前的节点 TreeNode<K, V> p = this; do { //ph:当前节点p的hash值,dir:接下来遍历的方向 int ph, dir; //pk:当前节点p的key值 K pk; //pl:p的左孩子节点,pr:p的右孩子节点,q: TreeNode<K, V> pl = p.left, pr = p.right, q; //如果p的hash值大于要寻找的key的hash值,往左边走 if ((ph = p.hash) > h) p = pl; //如果p的hash值小于要寻找的key的hash值,往右边走 else if (ph < h) p = pr; //如果遍历的p的key和寻找的key在同一个内存地址或者equals比较相等,那么直接返回p else if ((pk = p.key) == k || (k != null && k.equals(pk))) return p; else if (pl == null) p = pr; else if (pr == null) p = pl; else if ((kc != null || (kc = comparableClassFor(k)) != null) && (dir = compareComparables(kc, k, pk)) != 0) p = (dir < 0) ? pl : pr; else if ((q = pr.find(h, k, kc)) != null) return q; else p = pl; } while (p != null); return null; } /** * Calls find for root node. */ final TreeNode<K, V> getTreeNode(int h, Object k) { return ((parent != null) ? root() : this).find(h, k, null); } /** * Tie-breaking utility for ordering insertions when equal * hashCodes and non-comparable. We don't require a total * order, just a consistent insertion rule to maintain * equivalence across rebalancings. Tie-breaking further than * necessary simplifies testing a bit. */ static int tieBreakOrder(Object a, Object b) { int d; if (a == null || b == null //将a和b的类名来比较 || (d = a.getClass().getName().compareTo(b.getClass().getName())) == 0) //如果名字还相等的话...,最后进行比较hashcode d = (System.identityHashCode(a) <= System.identityHashCode(b) ? -1 : 1); return d; } /** * HashMap的树化 * Forms tree of the nodes linked from this node. */ final void treeify(Node<K, V>[] tab) { TreeNode<K, V> root = null; //遍历当前链表 //treeify是TreeNode的方法,this代表当前节点 for (TreeNode<K, V> x = this, next; x != null; x = next) { next = (TreeNode<K, V>) x.next; x.left = x.right = null; if (root == null) { //将root声明为根节点 x.parent = null; //红黑树根节点肯定是黑色的 x.red = false; //刚进来时,x是双向链表的头节点,先将其做为红黑树的根节点 root = x; } else { //x:要插入的节点 //p:当前遍历的节点 K k = x.key; int h = x.hash; Class<?> kc = null; for (TreeNode<K, V> p = root; ; ) { int dir, ph; K pk = p.key; if ((ph = p.hash) > h) //左边走 dir = -1; else if (ph < h) //右边走 dir = 1; //走到这里代表p的hash值和x的hash值相等 //给kc赋值 else if ((kc == null && (kc = comparableClassFor(k)) == null) //走到这里说明k的类已经实现comparable接口,将k和pk进行比较大小 || (dir = compareComparables(kc, k, pk)) == 0) //p的hash值和x的hash值相等且x和p的key的大小相等 //最后走tieBreakOrder()确定走向 dir = tieBreakOrder(k, pk); //<--------------------------------------------> //确定走向时极端情况下用了三种方法: //1.x和p的hash值比较大小 //2.(dir = compareComparables(kc, k, pk):x和p的key进行compareTo比较大小 //3.tieBreakOrder(k, pk):x和p进行getClass().getName()比较大小 // <--------------------------------------------> TreeNode<K, V> xp = p; if ((p = (dir <= 0) ? p.left : p.right) == null) { //遍历走到p的left或者right为null时,将x节点进行插入 x.parent = xp; if (dir <= 0) xp.left = x; else xp.right = x; //插入红黑树后进行调整,使其符合红黑树结构 root = balanceInsertion(root, x); break; } } } } //生成一个红黑树之后,要把红黑树的根节点赋值到table[index],即替换链表 moveRootToFront(tab, root); } /** * Returns a list of non-TreeNodes replacing those linked from * this node. */ final Node<K, V> untreeify(HashMap<K, V> map) { Node<K, V> hd = null, tl = null; for (Node<K, V> q = this; q != null; q = q.next) { Node<K, V> p = map.replacementNode(q, null); if (tl == null) hd = p; else tl.next = p; tl = p; } return hd; } /** * Tree version of putVal. * map:当前的map对象 * tab:map的桶 * h:插入的key的hash值 * k:插入的key * v:插入的value */ final TreeNode<K, V> putTreeVal(HashMap<K, V> map, Node<K, V>[] tab, int h, K k, V v) { //个人感觉逻辑类似于treeify() //kc:插入的key的Class对象 Class<?> kc = null; //该变量用于首次遍历时候查看整颗树是否有节点与插入的节点一致,有的话直接返回原先节点 boolean searched = false; //root:当前红黑树的根节点 TreeNode<K, V> root = (parent != null) ? root() : this; //此处遍历整棵红黑树,直到找到合适的插入节点 p:当前遍历的所在节点 for (TreeNode<K, V> p = root; ; ) { //dir:遍历的左右方向 ph:当前遍历节点的hash值 int dir, ph; //pk:当前遍历节点的key K pk; if ((ph = p.hash) > h) //左边走 dir = -1; else if (ph < h) //右边走 dir = 1; else if ((pk = p.key) == k || (k != null && k.equals(pk))) //如果插入的key值和原先的key值一样,返回原先的节点 return p; else if ((kc == null && (kc = comparableClassFor(k)) == null) //首次遍历则初始化kc,如果的插入的key的类未实现comparable接口 //或者插入的key值和当前p节点的key值通过compareTo比较为0,则进入下面的方法 || (dir = compareComparables(kc, k, pk)) == 0) { if (!searched) { TreeNode<K, V> q, ch; searched = true; //从p的左子节点开始遍历寻找,判断是否有节点与要插入的节点一样,有的话直接返回原先的节点 if (((ch = p.left) != null && (q = ch.find(h, k, kc)) != null) //从p的右子节点开始遍历寻找,判断是否有节点与要插入的节点一样,有的话直接返回原先的节点 || ((ch = p.right) != null && (q = ch.find(h, k, kc)) != null)) return q; } //最后的比较方法,详情看方法 dir = tieBreakOrder(k, pk); } TreeNode<K, V> xp = p; if ((p = (dir <= 0) ? p.left : p.right) == null) { Node<K, V> xpn = xp.next; TreeNode<K, V> x = map.newTreeNode(h, k, v, xpn); if (dir <= 0) xp.left = x; else xp.right = x; xp.next = x; x.parent = x.prev = xp; if (xpn != null) ((TreeNode<K, V>) xpn).prev = x; moveRootToFront(tab, balanceInsertion(root, x)); return null; } } } /** * Removes the given node, that must be present before this call. * This is messier than typical red-black deletion code because we * cannot swap the contents of an interior node with a leaf * successor that is pinned by "next" pointers that are accessible * independently during traversal. So instead we swap the tree * linkages. If the current tree appears to have too few nodes, * the bin is converted back to a plain bin. (The test triggers * somewhere between 2 and 6 nodes, depending on tree structure). */ final void removeTreeNode(HashMap<K, V> map, Node<K, V>[] tab, boolean movable) { int n; if (tab == null || (n = tab.length) == 0) return; int index = (n - 1) & hash; TreeNode<K, V> first = (TreeNode<K, V>) tab[index], root = first, rl; TreeNode<K, V> succ = (TreeNode<K, V>) next, pred = prev; if (pred == null) tab[index] = first = succ; else pred.next = succ; if (succ != null) succ.prev = pred; if (first == null) return; if (root.parent != null) root = root.root(); if (root == null || (movable && (root.right == null || (rl = root.left) == null || rl.left == null))) { tab[index] = first.untreeify(map); // too small return; } TreeNode<K, V> p = this, pl = left, pr = right, replacement; if (pl != null && pr != null) { TreeNode<K, V> s = pr, sl; while ((sl = s.left) != null) // find successor s = sl; boolean c = s.red; s.red = p.red; p.red = c; // swap colors TreeNode<K, V> sr = s.right; TreeNode<K, V> pp = p.parent; if (s == pr) { // p was s's direct parent p.parent = s; s.right = p; } else { TreeNode<K, V> sp = s.parent; if ((p.parent = sp) != null) { if (s == sp.left) sp.left = p; else sp.right = p; } if ((s.right = pr) != null) pr.parent = s; } p.left = null; if ((p.right = sr) != null) sr.parent = p; if ((s.left = pl) != null) pl.parent = s; if ((s.parent = pp) == null) root = s; else if (p == pp.left) pp.left = s; else pp.right = s; if (sr != null) replacement = sr; else replacement = p; } else if (pl != null) replacement = pl; else if (pr != null) replacement = pr; else replacement = p; if (replacement != p) { TreeNode<K, V> pp = replacement.parent = p.parent; if (pp == null) root = replacement; else if (p == pp.left) pp.left = replacement; else pp.right = replacement; p.left = p.right = p.parent = null; } TreeNode<K, V> r = p.red ? root : balanceDeletion(root, replacement); if (replacement == p) { // detach TreeNode<K, V> pp = p.parent; p.parent = null; if (pp != null) { if (p == pp.left) pp.left = null; else if (p == pp.right) pp.right = null; } } if (movable) moveRootToFront(tab, r); } /** * Splits nodes in a tree bin into lower and upper tree bins, * or untreeifies if now too small. Called only from resize; * see above discussion about split bits and indices. *

* 将红黑树中的节点拆分为上下部分的红黑树,如果拆分后太小,则取消树化。 * * @param map the map * @param tab the table for recording bin heads * @param index the index of the table being split * @param bit the bit of hash to split on */ final void split(HashMap<K, V> map, Node<K, V>[] tab, int index, int bit) { TreeNode<K, V> b = this; // Relink into lo and hi lists, preserving order TreeNode<K, V> loHead = null, loTail = null; TreeNode<K, V> hiHead = null, hiTail = null; int lc = 0, hc = 0; for (TreeNode<K, V> e = b, next; e != null; e = next) { next = (TreeNode<K, V>) e.next; e.next = null; if ((e.hash & bit) == 0) { if ((e.prev = loTail) == null) loHead = e; else loTail.next = e; loTail = e; ++lc; } else { if ((e.prev = hiTail) == null) hiHead = e; else hiTail.next = e; hiTail = e; ++hc; } } if (loHead != null) { if (lc <= UNTREEIFY_THRESHOLD) tab[index] = loHead.untreeify(map); else { tab[index] = loHead; if (hiHead != null) // (else is already treeified) loHead.treeify(tab); } } if (hiHead != null) { if (hc <= UNTREEIFY_THRESHOLD) tab[index + bit] = hiHead.untreeify(map); else { tab[index + bit] = hiHead; if (loHead != null) hiHead.treeify(tab); } } } /* ------------------------------------------------------------ */ // Red-black tree methods, all adapted from CLR static <K, V> TreeNode<K, V> rotateLeft(TreeNode<K, V> root, TreeNode<K, V> p) { // pp是祖父结点 // p是待旋转结点 // r是p的右孩子结点 // rl是r的左孩子结点 TreeNode<K, V> r, pp, rl; if (p != null && (r = p.right) != null) { if ((rl = p.right = r.left) != null) rl.parent = p; if ((pp = r.parent = p.parent) == null) (root = r).red = false; else if (pp.left == p) pp.left = r; else pp.right = r; r.left = p; p.parent = r; } return root; } static <K, V> TreeNode<K, V> rotateRight(TreeNode<K, V> root, TreeNode<K, V> p) { TreeNode<K, V> l, pp, lr; if (p != null && (l = p.left) != null) { if ((lr = p.left = l.right) != null) lr.parent = p; if ((pp = l.parent = p.parent) == null) (root = l).red = false; else if (pp.right == p) pp.right = l; else pp.left = l; l.right = p; p.parent = l; } return root; } static <K, V> TreeNode<K, V> balanceInsertion(TreeNode<K, V> root, TreeNode<K, V> x) { //新节点默认为红色 x.red = true; //xp:x的父节点,xpp:x的祖父节点,xpp1:xpp的左孩子节点,xppr:xpp的右孩子节点 for (TreeNode<K, V> xp, xpp, xppl, xppr; ; ) { //如果x没有父节点,则x就是根节点,根节点为黑色 if ((xp = x.parent) == null) { x.red = false; return x; } //如果父节点不是红色(也就是黑色),或者没有祖父节点,那么说明x是第二层的节点,父节点为根节点 else if (!xp.red || (xpp = xp.parent) == null) //直接返回 return root; //能走到这里说明x的父节点是红色 //如果x的父节点是祖父节点的左孩子节点 if (xp == (xppl = xpp.left)) { //祖父节点的右孩子(叔叔节点)不为空,且为红色 if ((xppr = xpp.right) != null && xppr.red) { //走到这里说明父节点和叔叔节点都是红色 //此时将叔叔节点和父亲节点变为黑色,祖父节点变成红色 //(此时祖父节点,父节点,叔叔节点,本身的节点已经调整完毕,祖父节点变成红色,要继续往上调整) //将x替换为祖父节点,进入下一个递归 xppr.red = false; xp.red = false; xpp.red = true; x = xpp; } //如果叔叔节点为空,或者是黑色 else { //如果x节点为xp的右孩子 if (x == xp.right) { //进行左旋,把x替换成xp进行递归,左旋过程中产生新的root节点 root = rotateLeft(root, x = xp); //x替换后,修改xp和xpp xpp = (xp = x.parent) == null ? null : xp.parent; } if (xp != null) { xp.red = false; if (xpp != null) { xpp.red = true; root = rotateRight(root, xpp); } } } } //如果x的父节点是祖父节点的右孩子节点 else { if (xppl != null && xppl.red) { xppl.red = false; xp.red = false; xpp.red = true; x = xpp; } else { if (x == xp.left) { root = rotateRight(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } if (xp != null) { xp.red = false; if (xpp != null) { xpp.red = true; root = rotateLeft(root, xpp); } } } } } } static <K, V> TreeNode<K, V> balanceDeletion(TreeNode<K, V> root, TreeNode<K, V> x) { for (TreeNode<K, V> xp, xpl, xpr; ; ) { if (x == null || x == root) return root; else if ((xp = x.parent) == null) { x.red = false; return x; } else if (x.red) { x.red = false; return root; } else if ((xpl = xp.left) == x) { if ((xpr = xp.right) != null && xpr.red) { xpr.red = false; xp.red = true; root = rotateLeft(root, xp); xpr = (xp = x.parent) == null ? null : xp.right; } if (xpr == null) x = xp; else { TreeNode<K, V> sl = xpr.left, sr = xpr.right; if ((sr == null || !sr.red) && (sl == null || !sl.red)) { xpr.red = true; x = xp; } else { if (sr == null || !sr.red) { if (sl != null) sl.red = false; xpr.red = true; root = rotateRight(root, xpr); xpr = (xp = x.parent) == null ? null : xp.right; } if (xpr != null) { xpr.red = (xp == null) ? false : xp.red; if ((sr = xpr.right) != null) sr.red = false; } if (xp != null) { xp.red = false; root = rotateLeft(root, xp); } x = root; } } } else { // symmetric if (xpl != null && xpl.red) { xpl.red = false; xp.red = true; root = rotateRight(root, xp); xpl = (xp = x.parent) == null ? null : xp.left; } if (xpl == null) x = xp; else { TreeNode<K, V> sl = xpl.left, sr = xpl.right; if ((sl == null || !sl.red) && (sr == null || !sr.red)) { xpl.red = true; x = xp; } else { if (sl == null || !sl.red) { if (sr != null) sr.red = false; xpl.red = true; root = rotateLeft(root, xpl); xpl = (xp = x.parent) == null ? null : xp.left; } if (xpl != null) { xpl.red = (xp == null) ? false : xp.red; if ((sl = xpl.left) != null) sl.red = false; } if (xp != null) { xp.red = false; root = rotateRight(root, xp); } x = root; } } } } } /** * Recursive invariant check */ static <K, V> boolean checkInvariants(TreeNode<K, V> t) { TreeNode<K, V> tp = t.parent, tl = t.left, tr = t.right, tb = t.prev, tn = (TreeNode<K, V>) t.next; if (tb != null && tb.next != t) return false; if (tn != null && tn.prev != t) return false; if (tp != null && t != tp.left && t != tp.right) return false; if (tl != null && (tl.parent != t || tl.hash > t.hash)) return false; if (tr != null && (tr.parent != t || tr.hash < t.hash)) return false; if (t.red && tl != null && tl.red && tr != null && tr.red) return false; if (tl != null && !checkInvariants(tl)) return false; if (tr != null && !checkInvariants(tr)) return false; return true; } }

方法剖析:

get()

HashMap的get(Object key)本质上是调用了getNode(int hash, Object key)

		public V get(Object key) {
     
        Node<K, V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
		final Node<K, V> getNode(int hash, Object key) {
     
        Node<K, V>[] tab;
        Node<K, V> first, e;
        int n;
        K k;
        //table初始化且长度大于0,&运算之后的下标得出第一个节点不为空
        if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
     
            //判断第一个节点是否就是要要检索的key,如果是的话返回第一个节点
            if (first.hash == hash && // always check first node
                    ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            //第一个节点不是,遍历之后的节点
            if ((e = first.next) != null) {
     
                //判断节点的数据结构是否是双向链表+红黑树结构
                if (first instanceof TreeNode)
                    return ((TreeNode<K, V>) first).getTreeNode(hash, key);
                do {
     
                    //链表结构,用do{...}while(...)遍历链表,直到便利结束或者找到节点
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

put()

HashMap的put(K key, V value)本质上是调用了putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict)

		public V put(K key, V value) {
     
        return putVal(hash(key), key, value, false, true);
    }
		final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
     
        //tab:hashmap的桶
        Node<K, V>[] tab;
        //p:链表结构时为链表的头节点,红黑树结构时为根节点
        Node<K, V> p;
        int n, i;
        //table为null,进行初始化
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        //通过&的方式,算出下标.
        //当n为2次方幂时,(n-1)&hash = hash%n,不直接取模的原因是位运算比取模运算速度更快
        if ((p = tab[i = (n - 1) & hash]) == null)
            //桶下标的对象为空,直接存入
            tab[i] = newNode(hash, key, value, null);
        else {
     
            Node<K, V> e;
            K k;
            if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                //存入的值和原先的值相同
                e = p;
            else if (p instanceof TreeNode)
                //下标的节点类型是红黑树结构
                e = ((TreeNode<K, V>) p).putTreeVal(this, tab, hash, key, value);
            else {
     
                //下标的节点类型是链表
                for (int binCount = 0; ; ++binCount) {
     
                    //开始遍历链表
                    //将e初始化为p的下一个节点,并判空
                    if ((e = p.next) == null) {
     
                        //遍历到最后进行插入:所以jdk1.8链表是尾插法
                        p.next = newNode(hash, key, value, null);
                        //binCount>=7(链表长度大于等于8)
                        //插入第8个的时候,binCount还是6,此时已经break了,所以网上说的链表长度达到8就转换红黑树其实是错误的...
                        //也就是下标对应的链表,在存入第9个节点的之后,会调用treeifyBin函数,当桶的大小长度大于64时,将链表转换为红黑树。
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                        //存入的值和原先的值相同,不操作,跳出循环
                        break;
                    //以上条件都不满足,将p替换为e(即:p.next),继续遍历
                    p = e;
                }
            }
            if (e != null) {
      // EXISTING MAPPING FOR KEY
                V oldValue = e.value;
                //此处判断主要用于HashMap的put()和putIfAbsent()
                //所以put()会直接替换原有的值,返回原有的值,而putIfAbsent()不会替换原有的值,返回原有的值
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        //走到这里说明没有找到原先的oldValue
        //修改次数+1
        ++modCount;
        if (++size > threshold)
            //判断是否需要扩容
            resize();
        //HashMap里此方法为空
        afterNodeInsertion(evict);
        return null;
    }

在putVal()引申出treeifyBin(Node[] tab, int hash)和resize()

treeifyBin()

		/**
     * Replaces all linked nodes in bin at index for given hash unless
     * table is too small, in which case resizes instead.
     * 链表转红黑树之前的初始化工作,先转换成双向链表
     *
     */
    final void treeifyBin(Node<K, V>[] tab, int hash) {
     
        int n, index;
        Node<K, V> e;
        //HashMap的桶为空,或者桶的大小长度小于64,直接进行扩容,不会树化.
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
     
            //此处操作是在树化之前将链表转换为双向链表
            //定义头节点和尾节点
            TreeNode<K, V> hd = null, tl = null;
            do {
     
                //将当前节点转换为树节点
                TreeNode<K, V> p = replacementTreeNode(e, null);
                if (tl == null)
                    //首次遍历t1肯定为null,将t1初始化为头节点
                    hd = p;
                else {
     
                    //之后开始遍历,组成双向链表
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                //做一层判空,开始进行真正的树化
                hd.treeify(tab);
        }
    }

resize()

		final Node<K, V>[] resize() {
     
        Node<K, V>[] oldTab = table;
        //原先数组的长度
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        //原先hashmap进行resize的阈值
        int oldThr = threshold;
        //新数组长度,新数组resize阈值
        int newCap, newThr = 0;
        //老数组的长度>0
        if (oldCap > 0) {
     
            if (oldCap >= MAXIMUM_CAPACITY) {
     
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //新数组的长度为老数组的两倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                    oldCap >= DEFAULT_INITIAL_CAPACITY)
                //新数组resize阈值为老数组resize阈值的两倍
                newThr = oldThr << 1; // double threshold
        } else if (oldThr > 0)
            // initial capacity was placed in threshold 初始容量置于阈值
            newCap = oldThr;
        else {
     
            // zero initial threshold signifies using defaults 零初始阈值表示使用默认值(初始化)
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int) (DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
     
            //如果走到这里新数组的扩容阈值还是0,那么进行初始化
            float ft = (float) newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float) MAXIMUM_CAPACITY ?
                    (int) ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({
     "rawtypes", "unchecked"})
        Node<K, V>[] newTab = (Node<K, V>[]) new Node[newCap];
        table = newTab;
        if (oldTab != null) {
     
            for (int j = 0; j < oldCap; ++j) {
     
                //开始遍历hashMap(扩容前)的桶
                Node<K, V> e;
                if ((e = oldTab[j]) != null) {
     
                    oldTab[j] = null;
                    //判断桶对应下标的头节点的是否还有下一个节点
                    if (e.next == null)
                        //桶对应下标的头节点没有下一个节点,直接&运算得出新的下标位置
                        //思考:为什么e可以直接做为hash之后得出的下标的头节点?
                        //扩容只是左位移1位,假设原先下标为index,那么新的hash之后的下标只能为index或者index+oldCap
                        //并且e没有下一个节点,所以不需要考虑链表情况下冲突的问题,直接插入即可.
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        //如果e是红黑树结构的一个节点,执行红黑树插入的方法
                        ((TreeNode<K, V>) e).split(this, newTab, j, oldCap);
                    else {
      // preserve order
                        //走到这里代表e是链表结构
                        Node<K, V> loHead = null, loTail = null;
                        Node<K, V> hiHead = null, hiTail = null;
                        Node<K, V> next;
                        do {
     
                            next = e.next;
                            //oldCap是2的N次幂,所以e.hash & oldCap 的结果只有0或者oldCap,跟定位下标e.hash & (oldCap-1)还是有所不同的
                            //扩容通过算出原先链表下所有节点的hash&oldCap的结果,来拆分成两条链表,再分别插入下标为j和j+oldCap中
                            if ((e.hash & oldCap) == 0) {
     
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            } else {
     
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                            //遍历到整条链表的尾节点
                        } while ((e = next) != null);
                        //插入前判空
                        if (loTail != null) {
     
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
     
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

remove()

		public V remove(Object key) {
     
        Node<K, V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
                null : e.value;
    }

remove(Object key)内部实现是removeNode(int hash, Object key, Object value,boolean matchValue, boolean movable)

		final Node<K, V> removeNode(int hash, Object key, Object value,
                                boolean matchValue, boolean movable) {
     
        Node<K, V>[] tab;
        Node<K, V> p;
        int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
                (p = tab[index = (n - 1) & hash]) != null) {
     
            Node<K, V> node = null, e;
            K k;
            V v;
            if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
     
                if (p instanceof TreeNode)
                    node = ((TreeNode<K, V>) p).getTreeNode(hash, key);
                else {
     
                    do {
     
                        if (e.hash == hash &&
                                ((k = e.key) == key ||
                                        (key != null && key.equals(k)))) {
     
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            //以上方法与getNode()类似
            if (node != null && (!matchValue || (v = node.value) == value ||
                    (value != null && value.equals(v)))) {
     
                //如果是红黑树结构,移除
                if (node instanceof TreeNode)
                    ((TreeNode<K, V>) node).removeTreeNode(this, tab, movable);
                //如果是first节点,替换first节点
                else if (node == p)
                    tab[index] = node.next;
                //直接指向node的下一个节点
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

你可能感兴趣的:(源码,hashmap,java)