结构:数组+链表
hashing(哈希法)的概念:散列法(Hashing)是一种将字符组成的字符串转换为固定长度(一般是更短长度)的数值或索引值的方法,称为散列法,也叫哈希法。
HashMap的key下标计算方式:先前后16为
扩容机制:每次扩容数组长度翻倍,扩容因数:默认数组长度的四分之三,可自定义;数组的长度也可自己定义
1.8之后变化:链表会和红黑树相互转化;阈值之8和6,java 1.8 就是没有红黑树和链表的转换
查找时间复杂度:红黑树:O(lgn),单链表:O(n)
key下标的计算:先前后16异或操作,之后再和数组长度减一,与操作;近似求余数
/**
* Constructs an empty HashMap with the specified initial
* capacity and load factor.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;//扩容因子
this.threshold = tableSizeFor(initialCapacity);//数组长度
}
/**
* Constructs an empty HashMap with the specified initial
* capacity and the default load factor (0.75).
*
* @param initialCapacity the initial capacity.
* @throws IllegalArgumentException if the initial capacity is negative.
*/
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* Constructs an empty HashMap with the default initial capacity
* (16) and the default load factor (0.75).
*/
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
可以自定义扩容因子和数组(桶)的长度;扩容因子是可以随意定义的,但是桶的长度不是随意定义的,是经过计算的,重点就在于tableSizeFor()方法;
/**
* Returns a power of two size for the given target capacity.
*/
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
输入0~15结果是16,输入16~31结果就是32,以此类推,总能得到最近的2的N次方数;也就是数组的长度不完全自定义;当然最小的数就是16
下面是一个简单HashMap结构代码,结构是相同的,就是没有经过hash算法去确定下标和位置;
public class Node<K, V> {
// 这个结构很简单吧,就是一个Node类,然后有两个成员变量,类型不确定,所以是泛型
final int hash;
final K key;
V value;
Node<K, V> next;//链表结构的指针
// 构造函数
Node(int hash, K key, V value, Node<K, V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public static void main(String[] args) {
Node[] nodes = new Node[16];
//构造函数第一个参数写死的0,实际应该是经过hash算法计算得出的;为了方便理解所以写死了
//因为他们三个的第一个参数都是0,所以产生哈希碰撞了,所以就用链表结构了,连接起来,大家都存储在
//Nodes[0]的位置
Node<String, String> node01 = new Node<>(0,"key", "value", null);
Node<String, String> node02 = new Node<>(0,"key", "value", node01);
Node<String, String> node03 = new Node<>(0,"key", "value", node02);
nodes[0] = node03;
//这里的第一个参数都是1,所以他们存在数组的第一个位置,
Node<String, String> node11 = new Node<>(1,"key", "value", null);
Node<String, String> node12 = new Node<>(1,"key", "value", node11);
Node<String, String> node13 = new Node<>(1,"key", "value", node12);
nodes[1] = node13;
//这就是一个小小的HashMap结构,因为HashMap是经过hash算法得到的下标位置,所以叫HashMap
}
}
static final int hash(Object key) {
int h;//如果等于null 下标就是0,不是null就前后16位的异或操作
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
然后是是在
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
//方法内容比较多,挑出来关键部分
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)//重点是这里i = (n - 1) & hash
tab[i] = newNode(hash, key, value, null);
}
上面的n是数组长度,然后与hash值按位与计算得出结果,这一步其实和算余数结果相同;主要是情况特殊,简单说就 h a s h hash hash % 2 n 2^n 2n = h a s h hash hash & ( 2 n 2^n 2n-1),而且位运算比取余速度快的多。
重点就是:tab[i = (n - 1) & hash]
tab是数组,[]中括号里的就是下标的计算,hash前面已经计算好了,就剩下最后与计算了;这样数据的下标就找到了,然后会看数组里是否有数据,没有数据就放进去,有数据就循环到尾,如下代码,也在 final V putVal()方法中
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
超找和插入的过程一样的,都是先计算下标,然后再遍历链表
红黑树和单链表转换有两个阈值,单链表长度为8转换成红黑树
红黑树数据低于6的时候转换成单链表
如下代码和注释中可以看到
/**
* The bin count threshold for using a tree rather than list for a
* bin. Bins are converted to trees when adding an element to a
* bin with at least this many nodes. The value must be greater
* than 2 and should be at least 8 to mesh with assumptions in
* tree removal about conversion back to plain bins upon
* shrinkage.
*/
static final int TREEIFY_THRESHOLD = 8;
/**
* The bin count threshold for untreeifying a (split) bin during a
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
* most 6 to mesh with shrinkage detection under removal.
*/
static final int UNTREEIFY_THRESHOLD = 6;
HashMap中有一段注释,就说了这个情况为什么是8和6
/*
* Because TreeNodes are about twice the size of regular nodes, we
* use them only when bins contain enough nodes to warrant use
* (see TREEIFY_THRESHOLD). And when they become too small (due to
* removal or resizing) they are converted back to plain bins. In
* usages with well-distributed user hashCodes, tree bins are
* rarely used. Ideally, under random hashCodes, the frequency of
* nodes in bins follows a Poisson distribution
* (http://en.wikipedia.org/wiki/Poisson_distribution) with a
* parameter of about 0.5 on average for the default resizing
* threshold of 0.75, although with a large variance because of
* resizing granularity. Ignoring variance, the expected
* occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
* factorial(k)). The first values are:
*
* 0: 0.60653066
* 1: 0.30326533
* 2: 0.07581633
* 3: 0.01263606
* 4: 0.00157952
* 5: 0.00015795
* 6: 0.00001316
* 7: 0.00000094
* 8: 0.00000006
* more: less than 1 in ten million
*/
红黑树占用空间是普通单链表的两倍(相较于链表结构,链表只有指向下一个节点的指针,二叉树则需要左右指针,分别指向左节点和右节点),所以只有当bin包含足够多的节点时才会转成红黑树(考虑到时间和空间的权衡),而是否足够多就是由TREEIFY_THRESHOLD的值决定的。当bin中节点数变少时,又会转成普通的bin。并且我们查看源码的时候发现,链表长度达到8就转成红黑树,当长度降到6就转成普通bin。
翻译上面的注释意思是:一个bin中链表长度达到8个元素的概率为0.00000006,几乎是不可能事件。这种不可能事件都发生了,说明bin中的节点数很多,查找起来效率不高。至于7,是为了作为缓冲,可以有效防止链表和树频繁转换。
大概意思就是:假如阈值定的是2,那么HashMap中可能经常发生链表和红黑树相互转换的问题,设置成8后,出现转换的概率非常的小,也是为了节省性能,包括红黑树转换单链表是6而不是8也是这个考虑;还有就是网上的一个普遍答案:
黑树的平均查找长度是log(n),如果长度为8,平均查找长度为log(8)=3,链表的平均查找长度为n/2,当长度为8时,平均查找长度为8/2=4,这才有转换成树的必要;链表长度如果是小于等于6,6/2=3,而log(6)=2.6,虽然速度也很快的,但是转化为树结构和生成树的时间并不会太短。
仁者见仁智者见智吧