NVIDIA/nvidia-docker

README.md
NVIDIA Container Toolkit
GitHub license Documentation Package repository

nvidia-gpu-docker

Introduction
The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includes a container runtime library and utilities to automatically configure containers to leverage NVIDIA GPUs. Full documentation and frequently asked questions are available on the repository wiki.

Quickstart
Make sure you have installed the NVIDIA driver and Docker 19.03 for your Linux distribution Note that you do not need to install the CUDA toolkit on the host, but the driver needs to be installed

Note that with the release of Docker 19.03, usage of nvidia-docker2 packages are deprecated since NVIDIA GPUs are now natively supported as devices in the Docker runtime.

Please note that this native GPU support has not landed in docker-compose yet. Refer to this issue for discussion.

If you are an existing user of the nvidia-docker2 packages, review the instructions in the “Upgrading with nvidia-docker2” section.

For first-time users of Docker 19.03 and GPUs, continue with the instructions for getting started below.

Ubuntu 16.04/18.04/20.04, Debian Jessie/Stretch/Buster

Add the package repositories

distribution=$(. /etc/os-release;echo I D ID IDVERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker
CentOS 7.X/8.X (docker-ce), RHEL 7.X/8.X (docker-ce), Amazon Linux 1/2
distribution=$(. /etc/os-release;echo I D ID IDVERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | sudo tee /etc/yum.repos.d/nvidia-docker.repo

sudo yum install -y nvidia-container-toolkit
sudo systemctl restart docker
openSUSE Leap 15.1 (docker-ce)
Since openSUSE Leap 15.1 still has Docker 18.06, you have two options:

Option 1: use the Virtualization:containers repository to fetch a more recent version of Docker

Upgrade Docker to 19.03+ first:

zypper ar https://download.opensuse.org/repositories/Virtualization:/containers/openSUSE_Leap_15.1/Virtualization:containers.repo
zypper install --allow-vendor-change ‘docker >= 19.03’ # accept the new signature

Add the package repositories

distribution=$(. /etc/os-release;echo I D ID IDVERSION_ID)
zypper ar https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo

sudo zypper install -y nvidia-container-toolkit
sudo systemctl restart docker
Option 2: stay with the deprecated nvidia-docker2 package for now (see also below)

Add the package repositories

distribution=$(. /etc/os-release;echo I D ID IDVERSION_ID)
zypper ar https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo

sudo zypper install -y nvidia-docker2 # accept the overwrite of /etc/docker/daemon.json
sudo systemctl restart docker
Usage

Test nvidia-smi with the latest official CUDA image

docker run --gpus all nvidia/cuda:10.0-base nvidia-smi

Start a GPU enabled container on two GPUs

docker run --gpus 2 nvidia/cuda:10.0-base nvidia-smi

Starting a GPU enabled container on specific GPUs

docker run --gpus ‘“device=1,2”’ nvidia/cuda:10.0-base nvidia-smi
docker run --gpus ‘“device=UUID-ABCDEF,1”’ nvidia/cuda:10.0-base nvidia-smi

Specifying a capability (graphics, compute, …) for my container

Note this is rarely if ever used this way

docker run --gpus all,capabilities=utility nvidia/cuda:10.0-base nvidia-smi
RHEL Docker or Podman
Note that RHEL’s fork of Docker is no longer supported on RHEL8. Note that for powerpc you will have to install the nvidia-container-runtime-hook

RHEL’s fork of docker doesn’t support the --gpus option, in this case you should still install the nvidia-container-toolkit package but you will have to use the old interface. e.g:

Add the package repositories

distribution=$(. /etc/os-release;echo I D ID IDVERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | sudo tee /etc/yum.repos.d/nvidia-docker.repo

On x86

sudo yum install -y nvidia-container-toolkit

On PPC

sudo yum install -y nvidia-container-hook
sudo systemctl restart docker

On RHEL 7/8

docker run -e NVIDIA_VISIBLE_DEVICES=all nvidia/cuda:10.0-base nvidia-smi

With Podman

podman run -e NVIDIA_VISIBLE_DEVICES=all nvidia/cuda:10.0-base nvidia-smi
More information on the environment variables are available on this page.

Upgrading with nvidia-docker2 (Deprecated)
If you are running an old version of docker (< 19.03) check the instructions on installing the nvidia-docker2 package which supports Docker >= 1.12. If you already have the old package installed (nvidia-docker2), updating to the latest Docker version (>= 19.03) will still work and will give you access to the new CLI options for supporting GPUs:

On debian based distributions: Ubuntu / Debian

sudo apt-get update
sudo apt-get --only-upgrade install docker-ce nvidia-docker2
sudo systemctl restart docker

On RPM based distributions: Centos / RHEL / Amazon Linux

sudo yum upgrade -y nvidia-docker2
sudo systemctl restart docker

All of the following options will continue working

docker run --gpus all nvidia/cuda:10.0-base nvidia-smi
docker run --runtime nvidia nvidia/cuda:10.0-base nvidia-smi
nvidia-docker run nvidia/cuda:10.0-base nvidia-smi
Note that in the future, nvidia-docker2 packages will no longer be supported.

Changelog
Friday September 20th: We changed the gpgkey, the new fingerprint is: BC02 13EE FC50 D046 F1CE 0208 6128 B5C2 36CD EE96 We will add a webpage on docs.nvidia.com listing the keys and their fingerprints. In the future we will publish a keyring package. This will allow automatic updates to the repository keys. Future updates to the keys will be communicated in advance. We apologize for any inconvenience caused by the unexpected change to the keys
Issues and Contributing
Checkout the Contributing document!

Please let us know by filing a new issue
You can contribute by opening a pull request

你可能感兴趣的:(php,cuda)