本文摘自《Python自然语言处理实战》核心技术与算法(涂铭 刘祥 刘树春 著)供学习交流 侵删
作为一个学习Python自然语言处理的小白,在阅读书籍和运行代码的过程中遇到了很多的问题,通过不断的查找资料对代码进行了完善,修复了其中的一些Bug,补充了一些注释,便于理解。希望能够与大家相互学习与交流。
实战提取文本关键词 主要完成以下内容 :
1.加载已有文档数据集;
2.加载停用词表;
3.对数据集中的文档进行分词;
4.根据停用词表,过滤干扰词;
5.根据数据集训练算法;
6.对新文档进行分词;
7.根据停用表过滤干扰词;
8.根据训练好的算法提取关键词。
以下脚本的运行还需要相关的文本文件,可在github下载
https://github.com/nlpinaction/learning-nlp
#!/usr/bin/env python
# -*-coding:utf-8 -*-
# author: LV
首先加载相应的模块
import math
import jieba
import jieba.posseg as psg
from gensim import corpora, models
from jieba import analyse
import functools # 使用了cmp_to_key函数
# 停用词表加载方法
def get_stopword_list():
# 停用词表存储路径,每一行为一个词,按行读取进行加载
# 进行编码转换确保匹配准确率
stop_word_path = './stopword.txt'
stopword_list = [sw.replace('\n', '') for sw in open(stop_word_path, encoding='utf-8').readlines()]
return stopword_list
# 分词方法,调用结巴接口
# pos为决定是否采用词性标注的参数
def seg_to_list(sentence, pos=False):
if not pos:
# 不进行词性标注的分词方法
seg_list = jieba.cut(sentence)
else:
# 进行词性标注的分词方法
seg_list = psg.cut(sentence)
return seg_list
# 定义干扰词的过滤方法
def word_filter(seg_list, pos=False):
stopword_list = get_stopword_list()
filter_list = []
# 根据POS参数选择是否过滤除名词外的其他词性
# 不进行词性过滤,则将词性都标记为n,表示全部保留
for seg in seg_list:
if not pos:
word = seg
flag = 'n'
else:
word = seg.word
flag = seg.flag
if not flag.startswith('n'):
continue
# 过滤停用词表中的词,以及长度为<2的词
if not word in stopword_list and len(word) > 1:
filter_list.append(word)
return filter_list
# 加载数据集,并对数据集中的数据分词和干扰过滤词
# 原始数据集:文件(每一行是一个文本)——>去干扰词、过滤——>新词语列表:非干扰词组成的词语列表
# pos为是否词性标注的参数,corpus_path为数据集路径
def load_data(pos=False, corpus_path='./corpus.txt'):
# 调用上面方式对数据集进行处理,处理后的每条数据仅保留非干扰词
doc_list = []
for line in open(corpus_path, 'r', encoding='utf-8'):
content = line.strip() # 除字符串头尾指定的字符(默认为空格或换行符)或字符序列(参数)。
seg_list = seg_to_list(content, pos) # 调用jieba分词
filter_list = word_filter(seg_list, pos) # 调用过滤函数
doc_list.append(filter_list)
return doc_list
# TF-IDF算法
# idf值统计方法
def train_idf(doc_list):
# 建立字典,字典中的键为词,值为每个词出现的文档数
idf_dic = {}
# 总文档数
tt_count = len(doc_list)
# 计算每个词出现的文档数
for doc in doc_list:
for word in set(doc):
# 字典(Dictionary) get() 函数返回指定键的值,如果值不在字典中返回默认值。
idf_dic[word] = idf_dic.get(word, 0.0) + 1.0
# 按公式转换为idf值,分母加1进行平滑处理
for k, v in idf_dic.items():
idf_dic[k] = math.log(tt_count / (1.0 + v))
# 对于没有在字典中的词,默认其仅在一个文档出现,得到默认idf值
default_idf = math.log(tt_count / (1.0))
return idf_dic, default_idf
# 排序函数,topK关键词按计算的分值排序
# 在得分相同时,根据关键词进行排序
def cmp(e1, e2):
import numpy as np
res = np.sign(e1[1] - e2[1]) # np.sign为符号函数
if res != 0:
return res
else:
a = e1[0] + e2[0]
b = e2[0] + e1[0]
if a > b:
return 1
elif a == b:
return 0
else:
return -1
# TF-IDF类
# 根据具体要求处理文本,计算每个词的TF值,并获取前面训练后的IDF数据,直接获取每个词的IDF值,综合计算每个词的TF-IDF
class TfIdf(object):
# 四个参数分别是:训练好的idf字典,默认idf值,处理(分词、去干扰)后的待提取文本,关键词数量
def __init__(self, idf_dic, default_idf, word_list, keyword_num):
self.word_list = word_list
self.idf_dic, self.default_idf = idf_dic, default_idf
self.tf_dic = self.get_tf_dic()
self.keyword_num = keyword_num
# 统计tf值
def get_tf_dic(self):
tf_dic = {}
for word in self.word_list:
tf_dic[word] = tf_dic.get(word, 0.0) + 1.0
tt_count = len(self.word_list)
for k, v in tf_dic.items():
tf_dic[k] = float(v) / tt_count
return tf_dic
# 按公式计算tf-idf
def get_tfidf(self):
tfidf_dic = {}
for word in self.word_list:
idf = self.idf_dic.get(word, self.default_idf)
tf = self.tf_dic.get(word, 0)
tfidf = tf * idf
tfidf_dic[word] = tfidf
tfidf_dic.items() # 字典 items() 方法以列表返回可遍历的(键, 值) 元组数组。
# 根据tf-idf排序,去排名前keyword_num的词作为关键词
# sorted() 函数对所有可迭代的对象进行排序操作。
for k, v in sorted(tfidf_dic.items(), key=functools.cmp_to_key(cmp), reverse=True)[:self.keyword_num]:
print(k + "/ ", end='')
print()
# 主题模型
class TopicModel(object):
# 三个传入参数:处理后的数据集,关键词数量,具体模型算法(LSI、LDA;默认为LSI),主题模型的主题数量
def __init__(self, doc_list, keyword_num, model='LSI', num_topics=4):
# 使用gensim的接口,将文本转为向量化表示
# 先构建词空间
self.dictionary = corpora.Dictionary(doc_list)
# 使用BOW模型向量化
corpus = [self.dictionary.doc2bow(doc) for doc in doc_list]
# 对每个词,根据tf-idf进行加权,得到加权后的向量表示
self.tfidf_model = models.TfidfModel(corpus)
self.corpus_tfidf = self.tfidf_model[corpus]
self.keyword_num = keyword_num
self.num_topics = num_topics
# 选择加载的模型
if model == 'LSI':
self.model = self.train_lsi()
else:
self.model = self.train_lda()
# 得到数据集的主题-词分布
word_dic = self.word_dictionary(doc_list)
self.wordtopic_dic = self.get_wordtopic(word_dic)
def train_lsi(self):
lsi = models.LsiModel(self.corpus_tfidf, id2word=self.dictionary, num_topics=self.num_topics)
return lsi
def train_lda(self):
lda = models.LdaModel(self.corpus_tfidf, id2word=self.dictionary, num_topics=self.num_topics)
return lda
def get_wordtopic(self, word_dic):
wordtopic_dic = {}
for word in word_dic:
single_list = [word]
wordcorpus = self.tfidf_model[self.dictionary.doc2bow(single_list)]
wordtopic = self.model[wordcorpus]
wordtopic_dic[word] = wordtopic
return wordtopic_dic
# 计算词的分布和文档的分布的相似度,取相似度最高的keyword_num个词作为关键词
def get_simword(self, word_list):
sentcorpus = self.tfidf_model[self.dictionary.doc2bow(word_list)]
senttopic = self.model[sentcorpus]
# 余弦相似度计算
def calsim(l1, l2):
a, b, c = 0.0, 0.0, 0.0
for t1, t2 in zip(l1, l2):
x1 = t1[1]
x2 = t2[1]
a += x1 * x1
b += x1 * x1
c += x2 * x2
sim = a / math.sqrt(b * c) if not (b * c) == 0.0 else 0.0
return sim
# 计算输入文本和每个词的主题分布相似度
sim_dic = {}
for k, v in self.wordtopic_dic.items():
if k not in word_list:
continue
sim = calsim(v, senttopic)
sim_dic[k] = sim
for k, v in sorted(sim_dic.items(), key=functools.cmp_to_key(cmp), reverse=True)[:self.keyword_num]:
print(k + "/ ", end='')
print()
# 词空间构建方法和向量化方法,在没有gensim接口时的一般处理方法
def word_dictionary(self, doc_list):
dictionary = []
for doc in doc_list:
dictionary.extend(doc)
dictionary = list(set(dictionary))
return dictionary
def doc2bowvec(self, word_list):
vec_list = [1 if word in word_list else 0 for word in self.dictionary]
return vec_list
# 对上面的各个方法进行封装,统一算法调用接口
def tfidf_extract(word_list, pos=False, keyword_num=10):
doc_list = load_data(pos)
idf_dic, default_idf = train_idf(doc_list)
tfidf_model = TfIdf(idf_dic, default_idf, word_list, keyword_num)
tfidf_model.get_tfidf()
def textrank_extract(text, pos=False, keyword_num=10):
textrank = analyse.textrank
keywords = textrank(text, keyword_num)
# 输出抽取出的关键词
for keyword in keywords:
print(keyword + "/ ", end='')
print()
def topic_extract(word_list, model, pos=False, keyword_num=10):
doc_list = load_data(pos)
topic_model = TopicModel(doc_list, keyword_num, model=model)
topic_model.get_simword(word_list)
# 调用几种算法对目标文本进行 关键词提取
if __name__ == '__main__':
text = '6月19日,《2012年度“中国爱心城市”公益活动新闻发布会》在京举行。' + \
'中华社会救助基金会理事长许嘉璐到会讲话。基金会高级顾问朱发忠,全国老龄' + \
'办副主任朱勇,民政部社会救助司助理巡视员周萍,中华社会救助基金会副理事长耿志远,' + \
'重庆市民政局巡视员谭明政。晋江市人大常委会主任陈健倩,以及10余个省、市、自治区民政局' + \
'领导及四十多家媒体参加了发布会。中华社会救助基金会秘书长时正新介绍本年度“中国爱心城' + \
'市”公益活动将以“爱心城市宣传、孤老关爱救助项目及第二届中国爱心城市大会”为主要内容,重庆市' + \
'、呼和浩特市、长沙市、太原市、蚌埠市、南昌市、汕头市、沧州市、晋江市及遵化市将会积极参加' + \
'这一公益活动。中国雅虎副总编张银生和凤凰网城市频道总监赵耀分别以各自媒体优势介绍了活动' + \
'的宣传方案。会上,中华社会救助基金会与“第二届中国爱心城市大会”承办方晋江市签约,许嘉璐理' + \
'事长接受晋江市参与“百万孤老关爱行动”向国家重点扶贫地区捐赠的价值400万元的款物。晋江市人大' + \
'常委会主任陈健倩介绍了大会的筹备情况。'
pos = True
seg_list = seg_to_list(text, pos)
filter_list = word_filter(seg_list, pos)
print('TF-IDF模型结果:')
tfidf_extract(filter_list)
print('TextRank模型结果:')
textrank_extract(text)
print('LSI模型结果:')
topic_extract(filter_list, 'LSI', pos)
print('LDA模型结果:')
topic_extract(filter_list, 'LDA', pos)