- AUTOSAR从入门到精通-【自动驾驶】自动驾驶中的摄像头技术(二)
格图素书
人工智能深度学习
目录前言算法原理摄像头在自动驾驶中的作用与意义分类按通信协议区分按不同感光芯片按像元排列方式摄像头核心关键指标多传感器融合在自动驾驶中的应用▲不同自动驾驶等级的传感器配置▲L2级别▲L2+/3级别▲L4/5级别摄像头的种类与应用车载智能前视像头关键参数如何选择摄像头全车摄像头布置及功能前视摄像头环视摄像头后视摄像头侧视摄像头内置/外置后视摄像头雷达的种类与应用摄像头与雷达的数量配置产业与行业现状摄
- 为什么要做”万能AI盒“:AI的未来,在于赋能每一个“做业务的人”
众链网络
万能AI盒AI人工智能AI智能体AI工具
真正的AI蓝海,不在“业务”两个字,而在那些每天被流程、文档、客户沟通所困的普通个体:销售、设计师、文案、客服、小店主、自由职业者……他们并不期待AI有多智能,只在乎能否切实帮自己省时间、减负担、提效率。当AI浪潮席卷而来,无数人都在畅谈它将如何颠覆企业、重塑行业。然而,在这些宏大的叙事背后,我们是否忽略了一个最核心的问题:那些每天在一线辛勤工作的普通人,他们真正需要什么样的AI?今天的AI产品,
- 可编程逻辑器件的发展与比较
cycf
FPGA之道fpga开发
可编程逻辑器件的发展与比较文章目录可编程逻辑器件的发展与比较一、早期的离散逻辑芯片二、复杂可编程逻辑器件(CPLD)(一)CPLD的诞生(二)CPLD的结构(三)CPLD的特点三、现场可编程门阵列(FPGA)(一)FPGA的架构变革(二)FPGA的特点四、CPLD与FPGA的对比五、总结一、早期的离散逻辑芯片在可编程逻辑器件(PLD)发明之前,设计师们只能使用一些专用的小芯片来搭建系统,这些小芯片
- 讯飞星火深度推理模型X1,为教育医疗带来革新
在科技飞速发展的今天,人工智能大模型已经成为推动各行业变革的重要力量。科大讯飞作为人工智能领域的佼佼者,其研发的星火深度推理模型X1,凭借独特的技术优势和强大的功能,为教育和医疗两大关乎国计民生的领域带来了前所未有的革新。技术原理与创新讯飞星火深度推理模型X1基于Transformer架构,并在此基础上进行了一系列创新。它通过大规模多阶段强化学习训练方法,在复杂推理、数学、代码、语言理解等场景全面
- 北京企业选北京软件外包公司?软件开发本地化团队有这些特点
哲科软件
小程序
北京的企业在寻找软件开发外包合作时,可能会遇到外地软件外包公司对本地政策不熟、响应速度慢、沟通成本高等问题。本地北京软件外包公司因为扎根北京,在软件开发服务上可能更符合企业需求。以下是本地北京软件外包公司在软件开发方面的5个特点,供企业参考。1.对北京政策和行业习惯更熟悉外地软件外包公司可能不太了解北京的特定要求,比如政务系统的数据存储规范、国企的特殊审批流程,或者教育/金融行业的合规标准。这可能
- 自动驾驶行业向端到端架构转型
未来创世纪
自动驾驶自动驾驶架构人工智能
一、效能革命消除信息损耗与延迟传统模块化架构的流程是感知、决策、规划、控制这四个环节串联。例如,在一个自动驾驶汽车行驶过程中,感知模块先识别出前方有障碍物,将信息传递给决策模块,决策模块再决定是刹车还是变道,接着规划模块规划具体的行驶路径,最后控制模块执行操作。然而,在这个过程中,每个模块之间的接口会导致信息损失。比如,感知模块可能只能传递有限的关于障碍物的信息(如距离、速度等几个关键参数),而一
- 模型上下文协议(MCP)和Function Calling的区别是什么?——深度解析两种AI交互技术的设计理念与实战应用
码力金矿
python人工智能MCP人工智能大数据hadoopeclipse前端pythonjava
一、引言:AI工具连接范式的“USB革命”与“专用遥控器”之争在AI应用开发中,模型与外部工具的交互能力至关重要。Anthropic推出的模型上下文协议(MCP)与OpenAI的FunctionCalling(函数调用)作为两种主流技术路径,常被开发者视为“万能接口”与“专用工具”的对比。本文将通过技术原理、应用场景、生态特性等多维度解析两者的本质差异,帮助您在实战中做出更高效的选择。二、MCP与
- 2025年人形机器人赛道爆发!这10家“黑马公司”一季度净利润暴涨,技术突破与商业化落地双轮驱动
2025年,人形机器人行业迎来历史性转折点。随着特斯拉OptimusGen-3量产突破20万台、波士顿动力AtlasE-Atlas电驱版发布,以及中国政策红利释放(如工信部《人形机器人创新发展指导意见》),全球市场进入“从0到1”的爆发期。本文通过公开财报数据与行业动态,梳理出2025年第一季度净利润增长最快的10家核心企业,并深度解析其技术突破与商业逻辑。一、增长最快TOP10企业榜单(数据来源
- [2219]基于JAVA的物流车智慧管理系统的设计与实现
阿鑫学长【毕设工场】
java人工智能开发语言课程设计毕业设计
毕业设计(论文)开题报告表姓名学院专业班级题目基于JAVA的物流车智慧管理系统的设计与实现指导老师(一)选题的背景和意义选题背景与意义:随着我国物流行业的快速发展和互联网技术的深度融合,高效、精准、智能的物流管理已经成为企业提升竞争力的关键要素。在当前信息化、智能化的大背景下,基于Java的物流车智慧管理系统的设计与实现具有重要的理论研究价值和广阔的应用前景。首先,从行业背景看,传统的物流管理模式
- C++ 程序崩溃排查
默执_
C++基础c++开发语言
程序报错,可以根据报错信息,日志文件来初步排查。但还是无法知道具体原因,则采用Coredump分析。使用空指针来赋值,故意制造错误。1、临时开启Coredump存储设置2、编译代码,运行程序3、用gdb调试可以准确的找到报错位置在18行#include#include#includeusingnamespacestd;voidtest(vectorv){coutmy_vec{"1","2","3"
- 普通人准备跳槽找AI相关工作?建议先把这份清单倒背如流
大模型教程.
人工智能跳槽chatgpt大模型面试语言模型
在AI浪潮席卷下,很多行业的职位描述中开始增加了’熟悉AI工具及应用者优先’这样的要求。这不是偶然现象,而是就业市场正在发生的根本转变。全球AI市场正以惊人速度扩张,预计规模将从2025年的2440亿美元猛增至2030年的8270亿美元,年复合增长率高达24%。这一爆发式增长直接催生了大量AI相关岗位需求。然而,人才供应远跟不上市场步伐。目前全球AI相关行业预计需约9700万专业人才,供给缺口达3
- 大模型呼叫中心场景分享之三十七:建筑行业的应用场景
大模型呼叫中心场景分享之三十七:建筑行业的应用场景作者:开源大模型呼叫中心系统FreeAICC一、项目前期咨询服务智能化1.24小时智能项目咨询台当潜在客户致电咨询商业综合体建设项目时:-需求精准识别:系统自动分析客户描述,识别"5万平米商业综合体""LEED认证""智慧建筑"等关键需求-方案即时生成:基于200+类似项目数据库,3分钟内生成初步方案框架-案例智能推荐:推送3个最匹配的已建成项目案
- 80% 人忽略的支付宝小程序优化致命细节
Ciling710
小程序
在支付宝小程序优化的过程中,许多开发者和运营者往往聚焦于界面设计、功能迭代等显性层面,却忽视了一些看似细微却足以影响全局的关键细节。这些被80%人忽略的“致命细节”,恰恰是决定小程序用户体验、流量转化与商业价值的核心要素。一、基础配置:被轻视的流量入口密钥1.关键词标签的动态校准多数开发者完成小程序上线后,便不再更新关键词标签,却未意识到用户搜索习惯与行业热点的动态变化。正确做法是每月通过支付宝开
- (附源码)node.js+mysql+基于JavaScript网上商城开发设计 毕业设计261620
Wx-Biye_Design
springbootjavamysqlpythonphp
Node.js网上商城的开发摘要随着Internet的使用越来越广泛,在传统的商业模式中,对于日常各类商品,人们习惯于到各种商家店铺购买。然而在快节奏的新时代中,人们不一定能为购买各类商品腾出时间,更不会耐心挑选自己想要的商品。所以设计一个网上商城,既是迎合电子商务的大潮流,也是传统商品销售行业的一个突破口,可以给传统销售行业带来转变和机遇。本系统主要是提供给用户一个购买各类商品的平台,通过价格优
- 大模型算法工程师面试宝典:精选面试题及参考答案全解析,助你备战AI算法工程师岗位!
大模型入门学习
人工智能产品经理大数据机器学习程序员大模型大模型学习
大模型应该算是目前当之无愧的最有影响力的AI技术。它正在革新各个行业,包括自然语言处理、机器翻译、内容创作和客户服务等,正成为未来商业环境的重要组成部分。截至目前大模型已超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关面试也是越来越卷。我今天给大家分享一篇大模型的面试题总结,内容较长,喜欢记得收藏、关注、点赞。ii.为什么会出现LLMs复读机问题?出现LLMs复读机问题可能
- 机器学习在智能金融风险评估中的应用:信用评分与欺诈检测
Blossom.118
机器学习与人工智能机器人机器学习人工智能python深度学习sklearn计算机视觉
在金融行业,风险评估是确保金融机构稳健运营的关键环节。随着大数据和机器学习技术的快速发展,金融机构开始探索如何利用机器学习算法来提高风险评估的准确性和效率。本文将探讨机器学习在智能金融风险评估中的应用,特别是信用评分和欺诈检测方面的最新进展,并分析其带来的机遇和挑战。一、智能金融风险评估中的信用评分(一)传统信用评分方法的局限性传统的信用评分主要依赖于人工规则和简单的统计模型,如逻辑回归。这些方法
- 机器学习在智能制造业中的应用:质量检测与设备故障预测
Blossom.118
机器学习与人工智能机器学习人工智能深度学习神经网络机器人sklearntensorflow
随着工业4.0和智能制造的推进,制造业正经历着一场深刻的数字化转型。智能制造业通过整合物联网(IoT)、大数据和机器学习等先进技术,实现从生产计划到质量控制的全流程优化。机器学习技术在智能制造业中的应用尤为突出,尤其是在质量检测和设备故障预测方面。本文将探讨机器学习在智能制造业中的应用,并分析其带来的机遇和挑战。一、智能制造业中的质量检测(一)传统质量检测方法的局限性传统的质量检测主要依赖于人工检
- 喜讯!Apache SeaTunnel 荣获上海开源创新菁英荟优秀开源项目奖
SeaTunnel
SeaTunnel开源数据同步大数据etl
近日,在2025上海开源创新菁英荟上,ApacheSeaTunnel凭借信创生态适配与智能化技术突破,荣获「优秀开源项目奖」。这个由中国团队孵化的开源项目,已成为全球数据集成领域的标杆。信创生态:支持20+国产数据库的无缝对接SeaTunnel深度适配华为OpenGauss、阿里OceanBase等20+主流国产数据库,支持CDC(变更数据捕获)与高性能加载。在证券行业信创转型中,SeaTunne
- EN 13501标准介绍
独二.
布线安全防火网络大数据信息与通信
1.什么是EN13501?EN13501是欧洲防火标准(Euroclass),用于对建筑材料的防火性能进行分类。该标准适用于电缆、建筑板材、隔热材料、地板、天花板等,广泛应用于建筑行业、电缆布线、数据中心、智能楼宇以及其他需要防火安全的领域。EN13501-1是该系列标准中专门针对建筑产品的防火性能分类标准,其中EN13501-6主要用于电缆的防火性能评估。2.EN13501-1防火分类体系EN1
- Python 爬虫实战:爬取掘金平台文章(列表解析 + 技术领域分类统计)
Python核芯
Python爬虫实战项目python爬虫开发语言
摘要:掘金平台汇聚了大量优质的编程技术和行业资讯文章。本文将深入讲解如何利用Python爬虫抓取掘金平台文章数据,解析文章列表信息,并进行技术领域分类统计,助力开发者了解技术热点和内容分布。一、引言掘金平台作为技术分享社区,专注于数字创业、编程技术和产品设计等领域。平台上的文章由开发者、创业者和设计者撰写,涵盖了从入门教程到前沿技术解析的丰富内容。通过爬取和分析这些文章数据,可以洞察当前技术领域的
- 以智能楼宇自动化控制系统为基石,构筑绿色建筑节能增效新标杆
ctrlworks
楼宇自控康沃思物联楼宇自控系统厂家ba系统厂商建筑管理系统厂家ibms系统厂家
在全球“双碳”目标加速推进与能源危机日益凸显的背景下,建筑行业作为能源消耗与碳排放的重点领域,正面临从传统建造向绿色智能化转型的迫切需求。数据显示,我国建筑运行阶段能耗占全社会总能耗超30%,碳排放占比达21.9%,而传统建筑管理模式下设备低效运行、能源浪费等问题普遍存在。智能楼宇自动化控制系统(BACS)凭借物联网、大数据、人工智能等技术,通过对建筑设备的精准监控、智能调度与协同管理,成为破解绿
- 全国省市县分行业碳排放月度数据(2000-2023)
皮皮学姐分享-ppx
政务学习经验分享微信公众平台笔记
1688全国省市县分行业碳排放月度数据(2000-2023)数据简介今天我们分享的数据为全国省市月度分行业碳排放数据,其中包含电力行业、工业过程、工业燃烧、建筑物能源、浪费、农业、燃料能源和运输八种指标的碳排放总量,原始数据是来源于EDGAR的NC格式文件,我们对其进行数据整理,转换为各省市的月度碳排放总量的面板数据,原始数据为长时序的全球NC格式文件,但考虑到NC数据用户使用起来并不方便,皮皮侠
- 制造业EDI对接中的ERP采购需求管理策略 —— 盟接之桥五点建议
盟接之桥
制造数据库人工智能大数据服务器
在制造业的供应链管理中,EDI(电子数据交换)软件的高效对接对于提升采购效率、降低库存成本、优化生产计划具有重要意义。特别是在处理供应链中的采购需求时,如何通过科学的策略实现精准管理,是企业持续关注的重点。以下将结合盟创之桥提出的五个关键点,深入探讨如何有效管理供应链采购需求。一、确保MRP需求运算的准确性物料需求计划(MRP)是制造企业进行采购与生产决策的核心工具。其运算结果的准确性直接影响到采
- 盟接之桥EDI软件助力制造企业提质增效的五大关键举措
在当今竞争激烈的制造业环境中,企业面临着前所未有的挑战。如何在降低成本的同时提高效率,成为制造企业生存与发展的关键。盟接之桥EDI(电子数据交换)软件正是为应对这一挑战而生,通过五个核心优势帮助企业实现降本增效的目标。1.简化部署与集成,实现无缝对接传统上,企业在尝试整合新的软件系统时,往往面临复杂的部署过程和高昂的时间成本。然而,盟接之桥EDI软件以其简洁的部署流程脱颖而出。它能够迅速地与现有的
- 边缘人工智能与医疗AI融合发展路径:技术融合与应用前景(下)
Allen_Lyb
数智化医院2025人工智能健康医疗数据库矩阵
医疗边缘AI的市场趋势医疗边缘AI市场正经历着显著的增长,根据市场研究公司的数据,2024年的边缘AI市场价值为125亿美元,估计在2025至2034年之间,由于各部门越来越多地采用边缘装置,CAGR为24.8%。保健、制造业、零售业和汽车业的企业拥有综合边缘计算解决方案[36]。这一增长趋势表明,边缘AI技术正在各行各业得到广泛应用,其中医疗保健是一个重要的应用领域。2023年全球边缘人工智能市
- 百度颠覆了自己,飞算JavaAI造福了中国程序员!
飞算JavaAI开发助手
百度
在当今这个科技日新月异的时代,企业纷纷寻求技术突破,以期在激烈的市场竞争中脱颖而出。百度,作为中国互联网行业的领军企业之一,凭借其强大的科技实力和创新能力,在人工智能等多个领域取得了显著成就,并正在逐步颠覆自身的传统形象。百度自成立之初,就将技术创新视为企业的生命线。从最初的搜索引擎技术,到如今的深度学习、自然语言处理、计算机视觉等前沿领域,百度始终走在技术革新的前沿。其自主研发的飞桨深度学习平台
- Java AI 开发智能体:从入门到实践
培风图南以星河揽胜
javajava人工智能开发语言
在人工智能(AI)技术蓬勃发展的今天,智能体作为AI领域的核心概念之一,正逐渐渗透到各个行业与应用场景。而Java凭借其跨平台性、丰富的类库和强大的生态系统,成为开发智能体的热门选择。本文将深入探讨如何使用Java进行AI开发智能体,从基础概念到实践应用,解答常见问题,为你揭开JavaAI开发智能体的神秘面纱。一、Java在AI开发中的优势1.跨平台性Java的“一次编写,到处运行”特性,使得基于
- 筑牢电力网安防线:密码技术应用全景
南京首传信安科技有限公司
密码应用密码学电力安全
密码技术在电力行业的应用是保障国家关键基础设施安全的核心环节。随着智能电网、新能源接入、电力物联网的发展,密码技术已深度融入电力系统的发、输、变、配、用、调、管等各个环节,为电力系统的安全稳定运行、数据机密性、完整性和身份真实性提供保障。一、主要应用领域1.网络与通信安全(基础保障)通信加密:对电力调度数据网、广域测量系统、配电自动化系统、用电信息采集系统等关键网络中的通信数据进行加密(如采用IP
- 密码应用与趋势之医疗数据安全
南京首传信安科技有限公司
数据安全健康医疗
目录二、密码技术的核心应用场景二、技术创新趋势三、关键防护措施四、总结数据泄露风险在不同行业间分布不均。医疗行业因其数据的极高价值、安全防护的相对短板及攻击者的高度关注,成为数据泄露的重灾区。泄露数据类型也日益多样化,从传统身份信息扩展到网络行为数据等新兴领域。医疗数据的高价值体现为:黑市价格高昂:完整医疗记录在黑市售价可达普通个人信息的数十倍。欺诈工具:医疗身份信息常被用于虚假理赔和药物欺诈。精
- 大模型智能运维详解:技术架构、落地挑战与行业实践
FreeTools
FreeAiGuard运维架构人工智能运维开发科技
大模型智能运维详解:技术架构、落地挑战与行业实践作者:开源大模型智能运维FreeAiOps在数字化转型加速的背景下,企业IT系统复杂度呈指数级增长,传统运维模式面临效率低下、故障定位困难、成本高昂等瓶颈。大模型技术的出现为智能运维提供了突破性解决方案,其通过自然语言处理、多模态数据分析与自动化决策能力,正在重塑运维工作的底层逻辑。本文将从技术原理、落地挑战、行业实践三个维度,系统解析大模型智能运维
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,