百度云链接如下
链接:https://pan.baidu.com/s/1KWYrGVVS6He7lO7skyhgQQ
提取码:p2dd
因为猫狗大战的测试集没有label所以说我们就从训练集中抽取20%作为测试集,代码如下图所示
import os, random, shutil
def moveFile(fileDir):
pathDir = os.listdir(fileDir) #取图片的原始路径
filenumber=len(pathDir)
rate=0.2 #自定义抽取图片的比例,比方说100张抽10张,那就是0.1
picknumber=int(filenumber*rate) #按照rate比例从文件夹中取一定数量图片
sample = random.sample(pathDir, picknumber) #随机选取picknumber数量的样本图片
print (sample)
for name in sample:
shutil.move(fileDir+name, tarDir+name)
return
if __name__ == '__main__':
fileDir = "D:\\神经网络\\Alexnet\猫狗数据集\\train\\" #源图片文件夹路径
tarDir = 'D:\\神经网络\\Alexnet\\猫狗数据集\\test\\' #移动到新的文件夹路径
moveFile(fileDir)
按照代码将训练集抽出20%作为测试集
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import time
#import creat_and_read_TFReacod as reader
import os
import input_data
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.InteractiveSession(config=config)
train_dir = 'D:\\神经网络\\Alexnet\\猫狗数据集\\finaltrain\\'
x_train,y_train=input_data.get_files(train_dir)
image_batch,label_batch=input_data.get_batch(x_train,y_train,227,227,50,2048)
#Batch_Normalization正则化
def batch_norm(inputs,is_train,is_conv_out=True,decay=0.999):
scale=tf.Variable(tf.ones([inputs.get_shape()[-1]]))
beta = tf.Variable(tf.zeros([inputs.get_shape()[-1]]))
pop_mean = tf.Variable(tf.zeros([inputs.get_shape()[-1]]), trainable=False)
pop_var = tf.Variable(tf.ones([inputs.get_shape()[-1]]), trainable=False)
if is_train:
if is_conv_out:
batch_mean, batch_var = tf.nn.moments(inputs, [0, 1, 2])
else:
batch_mean, batch_var = tf.nn.moments(inputs, [0])
train_mean = tf.assign(pop_mean, pop_mean * decay + batch_mean * (1 - decay))
train_var = tf.assign(pop_var, pop_var * decay + batch_var * (1 - decay))
with tf.control_dependencies([train_mean, train_var]):
return tf.nn.batch_normalization(inputs,
batch_mean, batch_var, beta, scale, 0.001)
else:
return tf.nn.batch_normalization(inputs,
pop_mean, pop_var, beta, scale, 0.001)
# 模型参数
learning_rate = 1e-4
training_iters = 200
batch_size = 50
display_step = 5
n_classes = 2
n_fc1 = 4096
n_fc2 = 2048
# 构建模型
x = tf.placeholder(tf.float32, [None, 227, 227, 3])
y = tf.placeholder(tf.float32, [None, n_classes])
W_conv = {
'conv1': tf.Variable(tf.truncated_normal([11, 11, 3, 96], stddev=0.0001)),
'conv2': tf.Variable(tf.truncated_normal([5, 5, 96, 256], stddev=0.01)),
'conv3': tf.Variable(tf.truncated_normal([3, 3, 256, 384], stddev=0.01)),
'conv4': tf.Variable(tf.truncated_normal([3, 3, 384, 384], stddev=0.01)),
'conv5': tf.Variable(tf.truncated_normal([3, 3, 384, 256], stddev=0.01)),
'fc1': tf.Variable(tf.truncated_normal([6 * 6 * 256, n_fc1], stddev=0.1)),
'fc2': tf.Variable(tf.truncated_normal([n_fc1, n_fc2], stddev=0.1)),
'fc3': tf.Variable(tf.truncated_normal([n_fc2, n_classes], stddev=0.1))
}
b_conv = {
'conv1': tf.Variable(tf.constant(0.0, dtype=tf.float32, shape=[96])),
'conv2': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[256])),
'conv3': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[384])),
'conv4': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[384])),
'conv5': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[256])),
'fc1': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[n_fc1])),
'fc2': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[n_fc2])),
'fc3': tf.Variable(tf.constant(0.0, dtype=tf.float32, shape=[n_classes]))
}
x_image = tf.reshape(x, [-1, 227, 227, 3])
# 卷积层 1
conv1 = tf.nn.conv2d(x_image, W_conv['conv1'], strides=[1, 4, 4, 1], padding='VALID')
conv1 = tf.nn.bias_add(conv1, b_conv['conv1'])
conv1 = batch_norm(conv1, True)
conv1 = tf.nn.relu(conv1)
# 池化层 1
pool1 = tf.nn.avg_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID')
norm1 = tf.nn.lrn(pool1, 5, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
# 卷积层 2
conv2 = tf.nn.conv2d(pool1, W_conv['conv2'], strides=[1, 1, 1, 1], padding='SAME')
conv2 = tf.nn.bias_add(conv2, b_conv['conv2'])
conv2 = batch_norm(conv2, True)
conv2 = tf.nn.relu(conv2)
# 池化层 2
pool2 = tf.nn.avg_pool(conv2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID')
# 卷积层3
conv3 = tf.nn.conv2d(pool2, W_conv['conv3'], strides=[1, 1, 1, 1], padding='SAME')
conv3 = tf.nn.bias_add(conv3, b_conv['conv3'])
conv3 = batch_norm(conv3, True)
conv3 = tf.nn.relu(conv3)
# 卷积层4
conv4 = tf.nn.conv2d(conv3, W_conv['conv4'], strides=[1, 1, 1, 1], padding='SAME')
conv4 = tf.nn.bias_add(conv4, b_conv['conv4'])
conv4 = batch_norm(conv4, True)
conv4 = tf.nn.relu(conv4)
# 卷积层5
conv5 = tf.nn.conv2d(conv4, W_conv['conv5'], strides=[1, 1, 1, 1], padding='SAME')
conv5 = tf.nn.bias_add(conv5, b_conv['conv5'])
conv5 = batch_norm(conv5, True)
conv5 = tf.nn.relu(conv5)
# 池化层5
pool5 = tf.nn.avg_pool(conv5, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID')
reshape = tf.reshape(pool5, [-1, 6 * 6 * 256])
fc1 = tf.add(tf.matmul(reshape, W_conv['fc1']), b_conv['fc1'])
fc1 = batch_norm(fc1, True, False)
fc1 = tf.nn.relu(fc1)
# 全连接层 2
fc2 = tf.add(tf.matmul(fc1, W_conv['fc2']), b_conv['fc2'])
fc2 = batch_norm(fc2, True, False)
fc2 = tf.nn.relu(fc2)
out = tf.add(tf.matmul(fc2, W_conv['fc3']), b_conv['fc3'])
# 定义损失
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=out))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)
# 评估模型
correct_pred = tf.equal(tf.argmax(out,1),tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
init = tf.global_variables_initializer()
def onehot(labels):
'''one-hot 编码'''
n_sample = len(labels)
n_class = max(labels) + 1
onehot_labels = np.zeros((n_sample, n_class))
onehot_labels[np.arange(n_sample), labels] = 1
return onehot_labels
save_model = ".//model//AlexNetModel.ckpt"
def train(opech):
with tf.Session() as sess:
sess.run(init)
train_writer = tf.summary.FileWriter(".//log", sess.graph) # 输出日志的地方
saver = tf.train.Saver()
c = []
start_time = time.time()
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
step = 0
for i in range(opech):
step = i
image, label = sess.run([image_batch, label_batch])
labels = onehot(label)
acc=[]
sess.run(optimizer, feed_dict={
x: image, y: labels})
loss_record = sess.run(loss, feed_dict={
x: image, y: labels})
acc=sess.run(accuracy,feed_dict={
x:image,y:labels})
print("now the loss is %f " % loss_record)
print("now the accuracy is %f "%acc)
c.append(loss_record)
end_time = time.time()
print('time: ', (end_time - start_time))
start_time = end_time
print("---------------%d onpech is finished-------------------" % i)
print("Optimization Finished!")
# checkpoint_path = os.path.join(".//model", 'model.ckpt') # 输出模型的地方
saver.save(sess, save_model)
print("Model Save Finished!")
coord.request_stop()
coord.join(threads)
plt.plot(c)
plt.xlabel('Iter')
plt.ylabel('loss')
plt.title('lr=%f, ti=%d, bs=%d' % (learning_rate, training_iters, batch_size))
plt.tight_layout()
plt.savefig('cat_and_dog_AlexNet.jpg', dpi=200)
train(training_iters)
训练时只需要更改训练集的地址即可