codeforces D. Design Tutorial: Inverse the Problem

题意:给定一个矩阵,表示每两个节点之间的权值距离,问是否可以对应生成一棵树,
使得这棵树中的任意两点之间的距离和矩阵中的对应两点的距离相等!

思路:我们将给定的矩阵看成是一个图,a 到 b会有多条路径, 如果存在一棵树,那么
这个树中a->b的距离一定是这个图中所有a->b中路径长度最短的一条!所以我们根据边权,
建立一棵MST树!再将MST树中的任意两点之间的距离求出来,看是否和矩阵中的对应的节点
对距离相同!

  1 #include<iostream>

  2 #include<cstring>

  3 #include<cstdio>

  4 #include<vector>

  5 #include<algorithm>

  6 #define N 2005

  7 #define M 2000005

  8 using namespace std; 

  9 

 10 int mp[N][N];

 11 int mpp[N][N];

 12 int f[N];

 13 int vis[N];

 14 int n;

 15 

 16 struct node{

 17     int v, dist;

 18     node(){}

 19     node(int v, int dist){

 20         this->v = v;

 21         this->dist = dist;

 22     }

 23 };

 24 

 25 vector<node>tmp[N];

 26 

 27 struct edge{

 28     int x, y, d;

 29     edge(int x, int y, int d){

 30         this->x = x;

 31         this->y = y;

 32         this->d = d;

 33     }

 34     edge(){}

 35 };

 36 

 37 int cnt;

 38 edge e[M];

 39 

 40 bool cmp(edge a, edge b){

 41     return a.d < b.d;

 42 }

 43 

 44 int getFather(int x){

 45     return x == f[x] ? x : f[x] = getFather(f[x]);

 46 }

 47 

 48 bool _union(int x, int y){

 49     int fx = getFather(x), fy = getFather(y);

 50     if( fx != fy){

 51         f[fx] = fy;

 52         return true;

 53     }

 54     return false;

 55 }

 56 

 57 void dfs(int u, int cur, int dist){

 58     vis[u] = 1;

 59     int len = tmp[u].size();

 60     for(int i = 0; i<len; ++i){

 61         int v = tmp[u][i].v;

 62         if( !vis[v] ){

 63             mpp[cur][v] = mpp[v][cur] = dist+tmp[u][i].dist;

 64             dfs(v, cur, dist+tmp[u][i].dist);

 65         }

 66     }

 67 }

 68 

 69 int main(){

 70     scanf("%d", &n);

 71     bool flag = true;

 72     bool flag1 = false;    

 73     for(int i = 1; i <= n; ++i){

 74         f[i] = i;

 75         for(int j = 1; j <= n; ++j){

 76             scanf("%d", &mp[i][j]);

 77             if(j > i) e[cnt++] = edge(i, j, mp[i][j]);//将边存起来 

 78             if(i==j && mp[i][j] != 0) flag = false;//是否自身到自身有权值 

 79             if( i!=j && !mp[i][j]) flag1 = true;//是否都是全零 

 80         }

 81     }

 82     if(!flag1 && flag){

 83         sort(e, e+cnt, cmp);

 84         for(int i=0; i<cnt; ++i)

 85             if( _union(e[i].x, e[i].y) )

 86                 tmp[e[i].x].push_back(node(e[i].y, e[i].d)), tmp[e[i].y].push_back(node(e[i].x, e[i].d));

 87        

 88         for(int i=1; flag && i<n; ++i){//求最小生成树中任意两个节点的距离 

 89             memset(vis, 0, sizeof(vis));

 90             dfs(i, i, 0);

 91             for(int j=i+1; flag && j<=n; ++j)

 92                 if(!(mp[i][j] == mpp[i][j] && mp[i][j] == mp[j][i]))//如果最小生成树中的任意两点距离和给定的对应的两点之间的距离不相等 

 93                    flag = false;

 94         }

 95          

 96         if( flag ) printf("YES\n");

 97         else printf("NO\n");

 98     }

 99     else printf("NO\n");

100     return 0;

101 } 
View Code

 

你可能感兴趣的:(codeforces)