转换PyTorch MNIST示例以使用Tune和基于函数的API。另外展示了argparse命令行解析来使用Tune。
代码:
# Original Code here:
# https://github.com/pytorch/examples/blob/master/mnist/main.py
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument(
'--batch-size',
type=int,
default=64,
metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument(
'--test-batch-size',
type=int,
default=1000,
metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument(
'--epochs',
type=int,
default=1,
metavar='N',
help='number of epochs to train (default: 1)')
parser.add_argument(
'--lr',
type=float,
default=0.01,
metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument(
'--momentum',
type=float,
default=0.5,
metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument(
'--no-cuda',
action='store_true',
default=False,
help='disables CUDA training')
parser.add_argument(
'--seed',
type=int,
default=1,
metavar='S',
help='random seed (default: 1)')
parser.add_argument(
'--smoke-test', action="store_true", help="Finish quickly for testing")
def train_mnist(args, config, reporter):
vars(args).update(config)
args.cuda = not args.no_cuda and torch.cuda.is_available()
#为CPU设置种子用于生成随机数,以使得结果是确定的
torch.manual_seed(args.seed)
# 为当前GPU设置随机种子;如果使用多个GPU,应该使用torch.cuda.manual_seed_all()为所有的GPU设置种子。
if args.cuda:
torch.cuda.manual_seed(args.seed)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(
'~/data',
train=True,
download=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))
])),
batch_size=args.batch_size,
shuffle=True,
**kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(
'~/data',
train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))
])),
batch_size=args.test_batch_size,
shuffle=True,
**kwargs)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
model = Net()
if args.cuda:
model.cuda()
optimizer = optim.SGD(
model.parameters(), lr=args.lr, momentum=args.momentum)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
def test():
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
output = model(data)
# sum up batch loss
test_loss += F.nll_loss(output, target, reduction='sum').item()
# get the index of the max log-probability
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(
target.data.view_as(pred)).long().cpu().sum()
test_loss = test_loss / len(test_loader.dataset)
accuracy = correct.item() / len(test_loader.dataset)
reporter(mean_loss=test_loss, mean_accuracy=accuracy)
for epoch in range(1, args.epochs + 1):
train(epoch)
test()
if __name__ == "__main__":
datasets.MNIST('~/data', train=True, download=True)
args = parser.parse_args()
import numpy as np
import ray
from ray import tune
from ray.tune.schedulers import AsyncHyperBandScheduler
ray.init()
# time_attr 时间基元; reward_attr 目标属性;
# grace_period 至少的时间(次数); max_t 最大的时间(次数);
sched = AsyncHyperBandScheduler(
time_attr="training_iteration",
reward_attr="neg_mean_loss",
max_t=400,
grace_period=20)
# 基于功能的函数( the function-based API)进行注册
tune.register_trainable(
"TRAIN_FN",
lambda config, reporter: train_mnist(args, config, reporter))
tune.run(
"TRAIN_FN",
name="exp",
scheduler=sched,
**{
"stop": {
"mean_accuracy": 0.98,
"training_iteration": 1 if args.smoke_test else 20
},
"resources_per_trial": {
"cpu": 3,
# "gpu": int(not args.no_cuda)
},
"num_samples": 1 if args.smoke_test else 10,
"config": {
"lr": tune.sample_from(
lambda spec: np.random.uniform(0.001, 0.1)),
"momentum": tune.sample_from(
lambda spec: np.random.uniform(0.1, 0.9)),
}
})
运行结果(使用cpu进行实验):
/usr/bin/python3.5 /home/kangkang/PycharmProjects/ray/python/ray/tune/examples/mnist_pytorch.py
2019-04-24 19:37:11,892 INFO node.py:423 -- Process STDOUT and STDERR is being redirected to /tmp/ray/session_2019-04-24_19-37-11_5077/logs.
2019-04-24 19:37:11,997 INFO services.py:363 -- Waiting for redis server at 127.0.0.1:37534 to respond...
2019-04-24 19:37:12,113 INFO services.py:363 -- Waiting for redis server at 127.0.0.1:59931 to respond...
2019-04-24 19:37:12,114 INFO services.py:760 -- Starting Redis shard with 3.35 GB max memory.
2019-04-24 19:37:12,133 INFO services.py:1384 -- Starting the Plasma object store with 5.03 GB memory using /dev/shm.
2019-04-24 19:37:12,280 INFO tune.py:60 -- Tip: to resume incomplete experiments, pass resume='prompt' or resume=True to run()
2019-04-24 19:37:12,281 INFO tune.py:211 -- Starting a new experiment.
== Status ==
Using AsyncHyperBand: num_stopped=0
Bracket: Iter 180.000: None | Iter 60.000: None | Iter 20.000: None
Bracket: Iter 180.000: None | Iter 60.000: None
Bracket: Iter 180.000: None
Resources requested: 0/8 CPUs, 0/0 GPUs
Memory usage on this node: 5.5/16.8 GB
2019-04-24 19:37:13,646 WARNING util.py:62 -- The `start_trial` operation took 1.2476763725280762 seconds to complete, which may be a performance bottleneck.
== Status ==
Using AsyncHyperBand: num_stopped=0
Bracket: Iter 180.000: None | Iter 60.000: None | Iter 20.000: None
Bracket: Iter 180.000: None | Iter 60.000: None
Bracket: Iter 180.000: None
Resources requested: 3/8 CPUs, 0/0 GPUs
Memory usage on this node: 5.7/16.8 GB
Result logdir: /home/kangkang/ray_results/exp
Number of trials: 10 ({'RUNNING': 1, 'PENDING': 9})
PENDING trials:
- TRAIN_FN_1_lr=0.022625,momentum=0.34345: PENDING
- TRAIN_FN_2_lr=0.065667,momentum=0.17842: PENDING
- TRAIN_FN_3_lr=0.0046286,momentum=0.82255: PENDING
- TRAIN_FN_4_lr=0.05494,momentum=0.88637: PENDING
- TRAIN_FN_5_lr=0.037683,momentum=0.49114: PENDING
- TRAIN_FN_6_lr=0.0049163,momentum=0.13329: PENDING
- TRAIN_FN_7_lr=0.012478,momentum=0.11843: PENDING
- TRAIN_FN_8_lr=0.032357,momentum=0.61504: PENDING
- TRAIN_FN_9_lr=0.079978,momentum=0.83846: PENDING
RUNNING trials:
- TRAIN_FN_0_lr=0.043764,momentum=0.67148: RUNNING
Result for TRAIN_FN_0_lr=0.043764,momentum=0.67148:
date: 2019-04-24_19-37-37
done: false
experiment_id: 12e59bae093942da87a144b50257e54f
hostname: kangkang-1994
iterations_since_restore: 1
mean_accuracy: 0.9713
mean_loss: 0.09200096435546876
neg_mean_loss: -0.09200096435546876
node_ip: 192.168.4.102
pid: 5110
time_since_restore: 23.326541423797607
time_this_iter_s: 23.326541423797607
time_total_s: 23.326541423797607
timestamp: 1556105857
timesteps_since_restore: 0
training_iteration: 1
,,,,,,
,,,,,,
,,,,,,
2019-04-24 19:39:12,712 INFO ray_trial_executor.py:178 -- Destroying actor for trial TRAIN_FN_9_lr=0.079978,momentum=0.83846. If your trainable is slow to initialize, consider setting reuse_actors=True to reduce actor creation overheads.
2019-04-24 19:39:12,715 INFO ray_trial_executor.py:178 -- Destroying actor for trial TRAIN_FN_8_lr=0.032357,momentum=0.61504. If your trainable is slow to initialize, consider setting reuse_actors=True to reduce actor creation overheads.
== Status ==
Using AsyncHyperBand: num_stopped=0
Bracket: Iter 180.000: None | Iter 60.000: None | Iter 20.000: None
Bracket: Iter 180.000: None | Iter 60.000: None
Bracket: Iter 180.000: None
Resources requested: 0/8 CPUs, 0/0 GPUs
Memory usage on this node: 5.7/16.8 GB
Result logdir: /home/kangkang/ray_results/exp
Number of trials: 10 ({'TERMINATED': 10})
TERMINATED trials:
- TRAIN_FN_0_lr=0.043764,momentum=0.67148: TERMINATED, [3 CPUs, 0 GPUs], [pid=5110], 23 s, 1 iter, 0.092 loss, 0.971 acc
- TRAIN_FN_1_lr=0.022625,momentum=0.34345: TERMINATED, [3 CPUs, 0 GPUs], [pid=5147], 23 s, 1 iter, 0.152 loss, 0.953 acc
- TRAIN_FN_2_lr=0.065667,momentum=0.17842: TERMINATED, [3 CPUs, 0 GPUs], [pid=5151], 24 s, 1 iter, 0.103 loss, 0.969 acc
- TRAIN_FN_3_lr=0.0046286,momentum=0.82255: TERMINATED, [3 CPUs, 0 GPUs], [pid=5148], 24 s, 1 iter, 0.181 loss, 0.946 acc
- TRAIN_FN_4_lr=0.05494,momentum=0.88637: TERMINATED, [3 CPUs, 0 GPUs], [pid=5152], 23 s, 1 iter, 0.246 loss, 0.929 acc
- TRAIN_FN_5_lr=0.037683,momentum=0.49114: TERMINATED, [3 CPUs, 0 GPUs], [pid=5112], 23 s, 1 iter, 0.103 loss, 0.968 acc
- TRAIN_FN_6_lr=0.0049163,momentum=0.13329: TERMINATED, [3 CPUs, 0 GPUs], [pid=5144], 22 s, 1 iter, 0.509 loss, 0.868 acc
- TRAIN_FN_7_lr=0.012478,momentum=0.11843: TERMINATED, [3 CPUs, 0 GPUs], [pid=5114], 22 s, 1 iter, 0.254 loss, 0.926 acc
- TRAIN_FN_8_lr=0.032357,momentum=0.61504: TERMINATED, [3 CPUs, 0 GPUs], [pid=4513], 22 s, 1 iter, 0.1 loss, 0.969 acc
- TRAIN_FN_9_lr=0.079978,momentum=0.83846: TERMINATED, [3 CPUs, 0 GPUs], [pid=4531], 22 s, 1 iter, 0.184 loss, 0.947 acc
Process finished with exit code 0
转换PyTorch MNIST示例以使用Tune和Trainable API。 还使用HyperBandScheduler并在最后检查模型。
源码:
# Original Code here:
# https://github.com/pytorch/examples/blob/master/mnist/main.py
from __future__ import print_function
import argparse
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from ray.tune import Trainable
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument(
'--batch-size',
type=int,
default=64,
metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument(
'--test-batch-size',
type=int,
default=1000,
metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument(
'--epochs',
type=int,
default=1,
metavar='N',
help='number of epochs to train (default: 1)')
parser.add_argument(
'--lr',
type=float,
default=0.01,
metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument(
'--momentum',
type=float,
default=0.5,
metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument(
'--no-cuda',
action='store_true',
default=False,
help='disables CUDA training')
parser.add_argument(
'--seed',
type=int,
default=1,
metavar='S',
help='random seed (default: 1)')
parser.add_argument(
'--smoke-test', action="store_true", help="Finish quickly for testing")
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
# Trainable API 类
class TrainMNIST(Trainable):
def _setup(self, config):
args = config.pop("args")
vars(args).update(config)
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
self.train_loader = torch.utils.data.DataLoader(
datasets.MNIST(
'~/data',
train=True,
download=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))
])),
batch_size=args.batch_size,
shuffle=True,
**kwargs)
self.test_loader = torch.utils.data.DataLoader(
datasets.MNIST(
'~/data',
train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))
])),
batch_size=args.test_batch_size,
shuffle=True,
**kwargs)
self.model = Net()
if args.cuda:
self.model.cuda()
self.optimizer = optim.SGD(
self.model.parameters(), lr=args.lr, momentum=args.momentum)
self.args = args
def _train_iteration(self):
self.model.train()
for batch_idx, (data, target) in enumerate(self.train_loader):
if self.args.cuda:
data, target = data.cuda(), target.cuda()
self.optimizer.zero_grad()
output = self.model(data)
loss = F.nll_loss(output, target)
loss.backward()
self.optimizer.step()
def _test(self):
self.model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in self.test_loader:
if self.args.cuda:
data, target = data.cuda(), target.cuda()
output = self.model(data)
# sum up batch loss
test_loss += F.nll_loss(output, target, reduction='sum').item()
# get the index of the max log-probability
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(
target.data.view_as(pred)).long().cpu().sum()
test_loss = test_loss / len(self.test_loader.dataset)
accuracy = correct.item() / len(self.test_loader.dataset)
return {"mean_loss": test_loss, "mean_accuracy": accuracy}
def _train(self):
self._train_iteration()
return self._test()
def _save(self, checkpoint_dir):
checkpoint_path = os.path.join(checkpoint_dir, "model.pth")
torch.save(self.model.state_dict(), checkpoint_path)
return checkpoint_path
def _restore(self, checkpoint_path):
self.model.load_state_dict(checkpoint_path)
if __name__ == "__main__":
datasets.MNIST('~/data', train=True, download=True)
args = parser.parse_args()
import numpy as np
import ray
from ray import tune
from ray.tune.schedulers import HyperBandScheduler
ray.init()
sched = HyperBandScheduler(
time_attr="training_iteration", reward_attr="neg_mean_loss")
tune.run(
TrainMNIST,
scheduler=sched,
**{
"stop": {
"mean_accuracy": 0.95,
"training_iteration": 1 if args.smoke_test else 20,
},
"resources_per_trial": {
"cpu": 3,
# "gpu": int(not args.no_cuda)
},
"num_samples": 1 if args.smoke_test else 20,
"checkpoint_at_end": True,
"config": {
"args": args,
"lr": tune.sample_from(
lambda spec: np.random.uniform(0.001, 0.1)),
"momentum": tune.sample_from(
lambda spec: np.random.uniform(0.1, 0.9)),
}
})
运行结果:
/usr/bin/python3.5 /home/kangkang/PycharmProjects/ray/python/ray/tune/examples/mnist_pytorch_trainable.py
2019-04-24 20:36:49,395 INFO node.py:423 -- Process STDOUT and STDERR is being redirected to /tmp/ray/session_2019-04-24_20-36-49_26310/logs.
2019-04-24 20:36:49,500 INFO services.py:363 -- Waiting for redis server at 127.0.0.1:51648 to respond...
2019-04-24 20:36:49,616 INFO services.py:363 -- Waiting for redis server at 127.0.0.1:15287 to respond...
2019-04-24 20:36:49,617 INFO services.py:760 -- Starting Redis shard with 3.35 GB max memory.
2019-04-24 20:36:49,633 INFO services.py:1384 -- Starting the Plasma object store with 5.03 GB memory using /dev/shm.
2019-04-24 20:36:49,741 INFO tune.py:64 -- Did not find checkpoint file in /home/kangkang/ray_results/TrainMNIST.
2019-04-24 20:36:49,741 INFO tune.py:211 -- Starting a new experiment.
== Status ==
Using HyperBand: num_stopped=0 total_brackets=0
Round #0:
Resources requested: 0/8 CPUs, 0/0 GPUs
Memory usage on this node: 5.2/16.8 GB
== Status ==
Using HyperBand: num_stopped=0 total_brackets=3
Round #0:
Bracket(Max Size (n)=5, Milestone (r)=81, completed=0.0%): {PENDING: 4, RUNNING: 1}
Bracket(Max Size (n)=8, Milestone (r)=27, completed=0.0%): {PENDING: 8}
Bracket(Max Size (n)=15, Milestone (r)=9, completed=0.0%): {PENDING: 7}
Resources requested: 3/8 CPUs, 0/0 GPUs
Memory usage on this node: 5.4/16.8 GB
Result logdir: /home/kangkang/ray_results/TrainMNIST
Number of trials: 20 ({'RUNNING': 1, 'PENDING': 19})
PENDING trials:
- TrainMNIST_0_lr=0.011026,momentum=0.79764: PENDING
- TrainMNIST_1_lr=0.039852,momentum=0.23715: PENDING
- TrainMNIST_3_lr=0.017233,momentum=0.20601: PENDING
- TrainMNIST_4_lr=0.076475,momentum=0.31586: PENDING
- TrainMNIST_5_lr=0.020496,momentum=0.10799: PENDING
- TrainMNIST_6_lr=0.081365,momentum=0.76826: PENDING
- TrainMNIST_7_lr=0.091581,momentum=0.51798: PENDING
- TrainMNIST_8_lr=0.013477,momentum=0.27381: PENDING
- TrainMNIST_9_lr=0.046978,momentum=0.45581: PENDING
- TrainMNIST_10_lr=0.024256,momentum=0.65206: PENDING
- TrainMNIST_11_lr=0.032366,momentum=0.67866: PENDING
- TrainMNIST_12_lr=0.056358,momentum=0.71433: PENDING
- TrainMNIST_13_lr=0.072232,momentum=0.30116: PENDING
- TrainMNIST_14_lr=0.01279,momentum=0.22866: PENDING
- TrainMNIST_15_lr=0.071809,momentum=0.66429: PENDING
- TrainMNIST_16_lr=0.086842,momentum=0.53263: PENDING
2019-04-24 20:36:51,069 WARNING util.py:62 -- The `start_trial` operation took 1.1444847583770752 seconds to complete, which may be a performance bottleneck.
- TrainMNIST_17_lr=0.054844,momentum=0.41178: PENDING
- TrainMNIST_18_lr=0.064185,momentum=0.72111: PENDING
- TrainMNIST_19_lr=0.08816,momentum=0.69577: PENDING
RUNNING trials:
- TrainMNIST_2_lr=0.019918,momentum=0.85528: RUNNING
Result for TrainMNIST_4_lr=0.076475,momentum=0.31586:
date: 2019-04-24_20-37-14
done: true
experiment_id: fc8592228c364db3b08483f9edd63782
hostname: kangkang-1994
iterations_since_restore: 1
mean_accuracy: 0.9701
mean_loss: 0.09734744338989258
neg_mean_loss: -0.09734744338989258
node_ip: 192.168.4.102
pid: 26357
time_since_restore: 23.453298568725586
time_this_iter_s: 23.453298568725586
time_total_s: 23.453298568725586
timestamp: 1556109434
timesteps_since_restore: 0
training_iteration: 1
......
......
......
== Status ==
Using HyperBand: num_stopped=0 total_brackets=3
Round #0:
Bracket(Max Size (n)=5, Milestone (r)=81, completed=100.0%): {TERMINATED: 5}
Bracket(Max Size (n)=8, Milestone (r)=27, completed=0.5%): {RUNNING: 1, TERMINATED: 7}
Bracket(Max Size (n)=5, Milestone (r)=36, completed=0.2%): {TERMINATED: 7}
Resources requested: 3/8 CPUs, 0/0 GPUs
Memory usage on this node: 5.4/16.8 GB
Result logdir: /home/kangkang/ray_results/TrainMNIST
Number of trials: 20 ({'RUNNING': 1, 'TERMINATED': 19})
RUNNING trials:
- TrainMNIST_7_lr=0.091581,momentum=0.51798: RUNNING
TERMINATED trials:
- TrainMNIST_0_lr=0.011026,momentum=0.79764: TERMINATED, [3 CPUs, 0 GPUs], [pid=26360], 22 s, 1 iter, 0.124 loss, 0.964 acc
- TrainMNIST_1_lr=0.039852,momentum=0.23715: TERMINATED, [3 CPUs, 0 GPUs], [pid=26358], 22 s, 1 iter, 0.122 loss, 0.962 acc
- TrainMNIST_2_lr=0.019918,momentum=0.85528: TERMINATED, [3 CPUs, 0 GPUs], [pid=26353], 23 s, 1 iter, 0.0872 loss, 0.973 acc
- TrainMNIST_3_lr=0.017233,momentum=0.20601: TERMINATED, [3 CPUs, 0 GPUs], [pid=26356], 44 s, 2 iter, 0.126 loss, 0.962 acc
- TrainMNIST_4_lr=0.076475,momentum=0.31586: TERMINATED, [3 CPUs, 0 GPUs], [pid=26357], 23 s, 1 iter, 0.0973 loss, 0.97 acc
- TrainMNIST_5_lr=0.020496,momentum=0.10799: TERMINATED, [3 CPUs, 0 GPUs], [pid=26354], 46 s, 2 iter, 0.125 loss, 0.962 acc
- TrainMNIST_6_lr=0.081365,momentum=0.76826: TERMINATED, [3 CPUs, 0 GPUs], [pid=762], 24 s, 1 iter, 0.121 loss, 0.965 acc
- TrainMNIST_8_lr=0.013477,momentum=0.27381: TERMINATED, [3 CPUs, 0 GPUs], [pid=787], 46 s, 2 iter, 0.137 loss, 0.958 acc
- TrainMNIST_9_lr=0.046978,momentum=0.45581: TERMINATED, [3 CPUs, 0 GPUs], [pid=704], 24 s, 1 iter, 0.0964 loss, 0.972 acc
- TrainMNIST_10_lr=0.024256,momentum=0.65206: TERMINATED, [3 CPUs, 0 GPUs], [pid=26355], 23 s, 1 iter, 0.107 loss, 0.968 acc
- TrainMNIST_11_lr=0.032366,momentum=0.67866: TERMINATED, [3 CPUs, 0 GPUs], [pid=734], 24 s, 1 iter, 0.0966 loss, 0.971 acc
- TrainMNIST_12_lr=0.056358,momentum=0.71433: TERMINATED, [3 CPUs, 0 GPUs], [pid=26359], 23 s, 1 iter, 0.102 loss, 0.97 acc
- TrainMNIST_13_lr=0.072232,momentum=0.30116: TERMINATED, [3 CPUs, 0 GPUs], [pid=1320], 21 s, 1 iter, 0.0965 loss, 0.969 acc
- TrainMNIST_14_lr=0.01279,momentum=0.22866: TERMINATED, [3 CPUs, 0 GPUs], [pid=1254], 50 s, 2 iter, 0.147 loss, 0.956 acc
- TrainMNIST_15_lr=0.071809,momentum=0.66429: TERMINATED, [3 CPUs, 0 GPUs], [pid=1312], 21 s, 1 iter, 0.0873 loss, 0.973 acc
- TrainMNIST_16_lr=0.086842,momentum=0.53263: TERMINATED, [3 CPUs, 0 GPUs], [pid=1344], 21 s, 1 iter, 0.097 loss, 0.971 acc
- TrainMNIST_17_lr=0.054844,momentum=0.41178: TERMINATED, [3 CPUs, 0 GPUs], [pid=25339], 22 s, 1 iter, 0.094 loss, 0.971 acc
- TrainMNIST_18_lr=0.064185,momentum=0.72111: TERMINATED, [3 CPUs, 0 GPUs], [pid=1292], 28 s, 1 iter, 0.0931 loss, 0.973 acc
- TrainMNIST_19_lr=0.08816,momentum=0.69577: TERMINATED, [3 CPUs, 0 GPUs], [pid=25365], 23 s, 1 iter, 0.0913 loss, 0.973 acc
Result for TrainMNIST_7_lr=0.091581,momentum=0.51798:
date: 2019-04-24_20-41-35
done: true
experiment_id: 3bfd303ffb3a4b81b5917919c2ad388b
hostname: kangkang-1994
iterations_since_restore: 1
mean_accuracy: 0.9655
mean_loss: 0.11476650772094726
neg_mean_loss: -0.11476650772094726
node_ip: 192.168.4.102
pid: 754
time_since_restore: 22.205914735794067
time_this_iter_s: 22.205914735794067
time_total_s: 22.205914735794067
timestamp: 1556109695
timesteps_since_restore: 0
training_iteration: 1
2019-04-24 20:41:35,979 INFO ray_trial_executor.py:178 -- Destroying actor for trial TrainMNIST_7_lr=0.091581,momentum=0.51798. If your trainable is slow to initialize, consider setting reuse_actors=True to reduce actor creation overheads.
== Status ==
Using HyperBand: num_stopped=0 total_brackets=3
Round #0:
Bracket(Max Size (n)=5, Milestone (r)=81, completed=100.0%): {TERMINATED: 5}
Bracket(Max Size (n)=3, Milestone (r)=81, completed=100.0%): {TERMINATED: 8}
Bracket(Max Size (n)=5, Milestone (r)=36, completed=0.2%): {TERMINATED: 7}
Resources requested: 0/8 CPUs, 0/0 GPUs
Memory usage on this node: 5.2/16.8 GB
Result logdir: /home/kangkang/ray_results/TrainMNIST
Number of trials: 20 ({'TERMINATED': 20})
TERMINATED trials:
- TrainMNIST_0_lr=0.011026,momentum=0.79764: TERMINATED, [3 CPUs, 0 GPUs], [pid=26360], 22 s, 1 iter, 0.124 loss, 0.964 acc
- TrainMNIST_1_lr=0.039852,momentum=0.23715: TERMINATED, [3 CPUs, 0 GPUs], [pid=26358], 22 s, 1 iter, 0.122 loss, 0.962 acc
- TrainMNIST_2_lr=0.019918,momentum=0.85528: TERMINATED, [3 CPUs, 0 GPUs], [pid=26353], 23 s, 1 iter, 0.0872 loss, 0.973 acc
- TrainMNIST_3_lr=0.017233,momentum=0.20601: TERMINATED, [3 CPUs, 0 GPUs], [pid=26356], 44 s, 2 iter, 0.126 loss, 0.962 acc
- TrainMNIST_4_lr=0.076475,momentum=0.31586: TERMINATED, [3 CPUs, 0 GPUs], [pid=26357], 23 s, 1 iter, 0.0973 loss, 0.97 acc
- TrainMNIST_5_lr=0.020496,momentum=0.10799: TERMINATED, [3 CPUs, 0 GPUs], [pid=26354], 46 s, 2 iter, 0.125 loss, 0.962 acc
- TrainMNIST_6_lr=0.081365,momentum=0.76826: TERMINATED, [3 CPUs, 0 GPUs], [pid=762], 24 s, 1 iter, 0.121 loss, 0.965 acc
- TrainMNIST_7_lr=0.091581,momentum=0.51798: TERMINATED, [3 CPUs, 0 GPUs], [pid=754], 22 s, 1 iter, 0.115 loss, 0.966 acc
- TrainMNIST_8_lr=0.013477,momentum=0.27381: TERMINATED, [3 CPUs, 0 GPUs], [pid=787], 46 s, 2 iter, 0.137 loss, 0.958 acc
- TrainMNIST_9_lr=0.046978,momentum=0.45581: TERMINATED, [3 CPUs, 0 GPUs], [pid=704], 24 s, 1 iter, 0.0964 loss, 0.972 acc
- TrainMNIST_10_lr=0.024256,momentum=0.65206: TERMINATED, [3 CPUs, 0 GPUs], [pid=26355], 23 s, 1 iter, 0.107 loss, 0.968 acc
- TrainMNIST_11_lr=0.032366,momentum=0.67866: TERMINATED, [3 CPUs, 0 GPUs], [pid=734], 24 s, 1 iter, 0.0966 loss, 0.971 acc
- TrainMNIST_12_lr=0.056358,momentum=0.71433: TERMINATED, [3 CPUs, 0 GPUs], [pid=26359], 23 s, 1 iter, 0.102 loss, 0.97 acc
- TrainMNIST_13_lr=0.072232,momentum=0.30116: TERMINATED, [3 CPUs, 0 GPUs], [pid=1320], 21 s, 1 iter, 0.0965 loss, 0.969 acc
- TrainMNIST_14_lr=0.01279,momentum=0.22866: TERMINATED, [3 CPUs, 0 GPUs], [pid=1254], 50 s, 2 iter, 0.147 loss, 0.956 acc
- TrainMNIST_15_lr=0.071809,momentum=0.66429: TERMINATED, [3 CPUs, 0 GPUs], [pid=1312], 21 s, 1 iter, 0.0873 loss, 0.973 acc
- TrainMNIST_16_lr=0.086842,momentum=0.53263: TERMINATED, [3 CPUs, 0 GPUs], [pid=1344], 21 s, 1 iter, 0.097 loss, 0.971 acc
- TrainMNIST_17_lr=0.054844,momentum=0.41178: TERMINATED, [3 CPUs, 0 GPUs], [pid=25339], 22 s, 1 iter, 0.094 loss, 0.971 acc
- TrainMNIST_18_lr=0.064185,momentum=0.72111: TERMINATED, [3 CPUs, 0 GPUs], [pid=1292], 28 s, 1 iter, 0.0931 loss, 0.973 acc
- TrainMNIST_19_lr=0.08816,momentum=0.69577: TERMINATED, [3 CPUs, 0 GPUs], [pid=25365], 23 s, 1 iter, 0.0913 loss, 0.973 acc
Process finished with exit code 0
使用Trainable类在MNIST上调整TensorFlow模型的基本示例。
源码: