数据建模—指标体系

指标

  • 指标,实际上就是一种度量。大到用于监控和评估商业进程的状态,小到衡量某个功能模块的情况,或者是自己的活动效果。

提起指标这个词,每个人似乎都可以说出几个指标,像经常在工作中会听到的日活、月活、注册率、转化率、交易量等

  • 事实上指标就是用来量化事物的一个工具,帮助我们去将一些抽象的事件得出一个轮廓上的描述。
  • 例如我们通过日活能去判断出我们整个产品的用户量,从而能反应出我们这个产品的一个健康程度,也就是否处于增长过程中

全方位地提供了一套完整的电商行业数据指标体系,作为精细化运营的指导体系,避免单点、片面地分析。虽然刻画对象是电商平台,但对于商家来说同样有着参考价值

背景

  • 公司层面有公司最关注的KPI,比如:日活、GMV、订单量等等;不同的部门又有不同的关注KPI,比如:新用户数、复够人数等等,有了KPI,我们就可以根据KPI来考察部门的表现,也就是绩效。
    这也是数字化转型嘛,所有的管理、绩效都数字化。
  • 就数据平台来说,指标算是元数据的一种**,指标的维护和管理是有套路的,下面就简单分享下关于指标的管理-指标字典**。

指标的衡量

业务层面是有价值;

可衡量业务真实情况;

简单可执行;

大家都共同认可。

从技术层面来看,一个好的指标,统一具备四个特点:容易收集快速衡量;准确度高;可被多维度分解;单一数据源。就像我们经常使用的衡量APP产品启动人数,使用UUID或者是COOKIE往往比使用IP更加准确。

但很多时候,因为技术或者是业务自身的原因,我们往往很难找到很完美的指标。那么这个时候我们最重要的就是统一口径进行分析,更多地观察数据的波动情况。

指标的构成

指标 = 业务维度描述 + 技术维度描述

指标,是反映某种事物或现象,描述在一定时间和条件下的规模、程度、比例、结构等概念,通常由指标名称和指标数值组成。

指标的意义

  • 上百万的市场预算,却不知道钱花出去到底带来了多少回报。
  • 做了几次活动,写了几篇文章,却不知道有没有带来足够的流量。
  • 辛辛苦苦导入了流量,却不知道流量有没有转化为用户。
  • 注册过程中缺乏每步转化率的监测,优化和优化效果更是无从谈起。
  • 不知道注册用户的留存情况,更不知道这些用户是否可以成为一个忠诚用户甚至付费用户

指标分类

简单计数型指标
  • 简单计数型指标是指可通过重复加1这一数学行为而获得数值的指标,如UV(Unique Visit , 独立访客数)、PV(Page View,页面浏览量)
复合型指标

通过若干个基础指标计算得来的指标,在业务角度无法再拆解的指标

  • 复合型指标是由简单计数型指标经四则运算后得到的,如跳出率、购买转化率。
  • 在计算指标时,我们还会涉及绝对数、相对数;百分比、百分点;频率、频数;比例、比率等计算方式。
基础指标
  • 不能再进一步拆解的指标,可以直接计算出来的指标,如“订单数”、“交易额”
衍生指标
  • 在基础指标的基础上,通过某个特殊维度计算出的指标,如“微信订单数”、“支付宝订单数”

指标分级

  • 在进行整个指标分级的时候,我们需要先思考:一级二级指标,能否反应产品当前的运营情况;三级四级指标能否帮助一线人员定位问题,指导运营工作
公司战略层面指标
  • 用于衡量公司整体目标达成情况,通常设定在5-8个指标。
  • 这类指标是与业务紧密结合,按照行业标准进行制定,有可参考的行业标准指标,且这类指标针对全公司所有员工均具有核心的指导意义。
  • 比如某游戏公司的一级指标:新增账号、留存率、DAU/MAU、付费人数(率)、收入金额等。
从市场竞争角度看
业务策略层面指标
  • 为了实现一级指标,企业会做出一些策略,二级指标通常与这些策略有所关联。
  • 可以简单理解为一级指标的实现路径,用于更快定位一级指标的问题

某游戏公司一级指标是游戏收入,那么二级指标可以设定为不同游戏物品的收入。一级指标是DAU,那么二级指标设定为分服务器的DAU等。这样当一级指标出现问题的时候,我们可以快速查询到问题的所在点。

业务执行层面指标
  • 三级指标是对二级指标的路径拆解,用于定位二级指标的问题。
  • 三级指标的使用通常是可以指导一线人员开展工作的指标内容
  • 三级指标的要求是:一线人员看到指标后,可以快速做出相应的动作。

游戏公司的二级指标是XX区服的DAU,那么三级指标则可以设定为游戏时长、游戏频次、游戏等级分布、游戏关卡流失情况等。通过观察这些数据,可以去针对性地做调整,如某个关卡流失的用户特别高,那么尝试降低难度。

OSM模型

OSM模型(Obejective,Strategy,Measurement)分别代表业务目标、业务策略、业务度量

O:用户使用产品的目标是什么?产品满足了用户的什么需求?

S:为了达成上述目标我采取的策略是什么?

M:这些策略随之带来的数据指标变化有哪些?

搭建指标体系是为了更好地发现用户的问题,并且去解决。所以我们需要站在用户的场景去考虑整体的内容。

以知乎为例,按照OSM模型,它的指标是什么样的?

O:用户来使用知乎这个产品,目标是什么?

这里涉及两个不同的用户——内容分享者和内容消费者,这里简单介绍内容生产者的分析思路,大家可以自己试着分析下内容消费者。

用户需求:分享知识观点(发布观点),建立行业影响力(内容受到反馈)。

那么,如何让用户感受到自己的需求被满足了呢?

S:知乎做的策略是:内容点赞评论、内容打赏、盐值增加、XX话题优秀回答者。

M:接下来,我们需要针对这些用户动作去做指标,在这里面我们的指标会有两个,分别是结果指标和过程指标。

结果指标:用于衡量用户发生某个动作后所产生的结果,通常是延后知道的,很难进行干预。

过程指标:用户在做某个动作时候所产生的指标,可以通过某些运营策略来影响这个过程指标,从而影响最终的结果。

还是以内容生产者为例:

结果性指标:发布文章数、发布文章的人数、文章点赞/评论数、被打赏人数、被打赏金额、优秀回答者人数、新增优秀回答者人数等。

过程性指标:使用内容导入人数、内容发布转化率、文章互动率、评论折叠率等。

通常我们会在指定指标的过程中使用OSM的模型,去针对用户在不同场景下产生的动作,以及这个动作可能带来的结果,用户在这个动作中会出现什么样的数据变化。之后再结合数据,针对性地去调整我们的运营策略或者产品功能。

简单理解:结果性指标更多的是监控数据异常,或者是监控某个场景下用户需求是否被满足。而过程性指标则是更加关注用户的需求为什么被满足(没被满足)。

如何设立指标体系

明确业务目的,确定核心指标

数据建模—指标体系_第1张图片

数据建模—指标体系_第2张图片

工具类业务
  • 帮助用户节省时间,产品自身提供价值。如墨迹天气、TEA。核心指标应该聚焦到判断工具的使用率。
内容类业务
  • 掉用户时间,产品自身提供价值。如今日头条、一点资讯。核心指标应该聚焦到内容的质与量。
交易类业务
  • 帮助用户节省时间,产品通过链接其他资源提供价值。如淘宝、京东金融。核心指标应该聚焦到转化率。
社交类业务
  • 杀掉用户时间,产品通过链接其他资源提供价值。如Soul、探探。核心指标应该聚焦到用户的活跃程度。

拆解核心指标

  • 明确业务类型和业务指标之后,我们要结合实际业务,将主要关注的指标拆解到可行动的程度。
按场景拆分成多个子指标的和
  • DAU ≈ 日新增用户+留存用户+回流用户;
按一定的关系拆分成多个子指标的积
  • GMV (总消费额)≈ 用户数 x 购买频次 x 客单价;
  • 销售额 ≈ 用户总量 x 付费率 x 客单价;
  • LTV(生命周期总价值 ,life time value )=LT(生命周期 ,life time)x ARPU(每个用户的平均花费,Average Revenue Per Use)

指标体系的评价

系统性
  • 能够发现局部与整体的关系及问题定位,当数据发生异动时,通过指标体系的逻辑拆解,能迅速定位到大致的异动模块及原因
全面性
  • 能满足不同数据使用方的日常需求,对产品经营及发展情况有整体了解;
认知统一
  • 指标体系服务于不同角色群体,简单科学可解释,符合大众认知;
告别虚荣
  • 指标体系要能反映产品活跃情况,杜绝华而不实的虚荣指标;
可迭代
  • 指标体系随不同生命周期阶段而改变,指标体系要在发展中保持迭代

指标的管理——指标字典

  • 指标字典,其实就是对指标的管理,指标多了以后,为了共享和统一修改和维护,我们会在Excel中维护所有的指标。当然,Excel对于共享和版本控制也不是很方便,有条件的话,可以开发个简单的指标管理系统,再配合上血缘关系,就更方便追踪数据流转了。

指标编码

  • 为了方便查找和管理,我们会对指标定义一套编码

业务口径

  • 指标最重要的就是,明确指标的统计口径,就是这个指标是怎么算出来的,口径统一了,才不会产生歧义
口径梳理
  • 一开始指标的梳理是很麻烦的,因为要统一一个口径,需要和不同的部门去沟通协调;
  • 还有可能会有各种各样的指标出现,需要去判断是否真的需要这个指标,是否可以用其他指标来替代;指标与指标之间的关系也需要理清楚
迭代维护
  • 而且第一版指标梳理好之后,需要进行推广和维护,不断地迭代,持续推动,让公司所有部门都统一站在一个视角关注问题。

计算公式

  • 对业务口径的翻译,需要业务方告知你从哪里的数据去计算

指标模板

数据建模—指标体系_第3张图片

案例

某电商平台准备做一个大促活动

  • 某电商平台准备做一个大促活动,BOSS说,把活动的销售总额提高5倍,我们应该怎么办呢?首先,如果想提升销售额,要么提升买家数,要么提升客单价。
  • 销售总额可以拆分为:销售总额=买家数 x 客单价销售总额=参与活动用户总量 x 付费转化率x 客单价我们就拥有了三个方向,我们可以把“参与活动用户总量”、“付费转化率”、“ARPU”任意提升5倍,或各的提升率乘积达到5,即可完成BOSS的目标。

你可能感兴趣的:(数据仓库,数据建模,数据建模,数据仓库)