- 基于大模型的短暂性脑缺血发作(TIA)全流程预测与诊疗辅助系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习
目录一、系统核心目标二、系统架构模块三、实验验证证据链系统架构流程图关键技术创新点一、系统核心目标构建多模态数据融合的TIA预测-干预-管理闭环,覆盖术前预警、术中决策、术后康复全周期二、系统架构模块1.术前预测模块高危人群筛查模型输入:电子健康记录(EHR)、基因数据、可穿戴设备实时监测特征工程:血压波动模式、颈动脉斑块稳定性评分TIA发作概率预测72小时预警模型(LSTM+Transforme
- Sklearn 机器学习 数值离散化 虚拟编码
Thomas Kant
人工智能机器学习sklearn人工智能
亲爱的技术爱好者们,热烈欢迎来到Kant2048的博客!我是ThomasKant,很开心能在CSDN上与你们相遇~本博客的精华专栏:【自动化测试】【测试经验】【人工智能】【Python】Sklearn机器学习:数值离散化+虚拟编码实战详解在机器学习的特征工程中,数值型特征并不总是适合直接输入模型。尤其是树模型或分类模型时,**将连续变量进行离散化(分箱)+虚拟编码(独热编码)**是一种常见且高效的
- 【机器学习的五大核心步骤】从零构建一个智能系统
目录一、数据处理:一切从“数据”开始✅常见数据源✅关键任务二、特征工程:从“数据”中提取“洞察”✅常用方法✅高阶技巧三、建立模型:从“算法”到“智能”✅模型类型✅常见算法✅模型训练四、评估迭代:没有反馈,就没有智能✅常用评估指标✅迭代优化方法五、上线应用与持续优化:从“实验室”到“真实世界”✅模型部署方式✅持续优化总结:看懂全流程!延伸阅读推荐作者:一叶轻舟|AI应用开发者&技术博主日期:2025
- 使用随机森林实现目标检测
司南锤
python基础学习AI随机森林
核心实现思路滑动窗口策略:在图像上滑动固定大小的窗口,对每个窗口进行分类多维特征提取:结合统计特征、纹理特征、边缘特征、形状特征等随机森林分类:训练二分类器判断窗口是否包含目标后处理优化:使用非极大值抑制减少重复检测特征工程的重要性LBP纹理特征:捕捉局部纹理模式灰度共生矩阵:描述纹理的统计特性边缘密度:反映目标边界信息形状描述符:圆形度、面积比等几何特征实际应用建议数据收集:收集大量正负样本进行
- 体育赛事大数据分析:AI模型对足球大小球预测的精度优化
东奔西走的小喇叭
人工智能数据分析机器学习
在足球赛事的大数据分析中,AI模型对“大小球”(总进球数是否高于/低于预设值,如2.5球)的预测优化是一个复杂但具有实际价值的课题。以下从技术实现、数据策略、模型优化及挑战四个维度展开分析:1.数据来源与特征工程核心数据源结构化比赛数据:历史进球数、射门/射正率、控球率、角球、任意球、红黄牌、伤停球员等。球队动态特征:近期5-10场进攻/防守效率、主客场表现、战术风格(如高位逼抢或防守反击)。球员
- Kaggle量化比赛复盘: Optiver - Trading at the Close
熬夜造bug
AI领域应用金融人工智能机器学习深度学习
目录前言一、开源方案1.6th获奖方案(代码未开源)1.1.特征工程(关键代码)1.2.方案解析2.7th获奖方案(开源)2.1.特征工程2.2.特征工程3.9th获奖方案(半开源)3.1.特征构造3.2.特征筛选3.3.模型3.4.zero_sum(标签后处理)4.14th获奖方案(开源)4.1.方案开源链接4.2.zero_sum(标签后处理)5.15th获奖方案(半开源)5.1.特征工程5.
- [KO机器学习] Day2 特征工程:数据预处理:序号编码、独热编码、二进制编码
码农男孩
机器学习机器学习人工智能计算机视觉算法支持向量机
场景描述类别型特征(categoricalfeature)主要是指性别(男女)、血型(A,B,AB,O)等只在有限选项内取值的特征。类别型特征原始输入通常是字符串形式,除了决策树等少数模型能直接处理字符串形式的输入,对于逻辑回归、支持向量机等模型来说,类别型特征必须经过处理转换成数值型特征才能正确工作。在对数据进行预处理时,应该怎么样处理类别型特征?难度:★☆☆☆☆①序号编码OrdinalEnco
- 机器学习专栏(13):数据探索三重奏——从地理热力图到特征工程的财富密码
Sonal_Lynn
人工智能专题机器学习python人工智能深度学习算法开发语言
目录导言:当数据点连成黄金海岸线一、地理可视化:数据中的加州淘金热1.1基础地理散点图1.2高密度区域透视术二、相关性解密:数字背后的财富公式2.1皮尔逊相关系数矩阵2.2非线性关系发现术三、特征炼金术:创造新的财富密码3.1特征组合公式库3.2相关性进化史四、异常数据猎手:揪出数据中的"叛徒"4.1价格天花板检测4.2时空异常检测五、工业级探索工具箱5.1自动化数据透视5.2探索流程checkl
- Python-日志检测异常行为的详细技术方案
以下是根据行为日志检测异常行为的详细技术方案,涵盖数据收集、特征工程、模型选择、部署与优化的全流程:1.数据收集与预处理1.1数据来源行为日志通常包括以下类型:用户行为日志:点击、登录、交易、页面停留时间等。系统日志:服务器访问、API调用、资源使用率等。设备日志:地理位置、设备指纹(如IP、浏览器、操作系统)。1.2数据清洗去除噪声:过滤无效或重复数据(如爬虫请求、测试数据)。时间对齐:统一时间
- 简历模板1——王明 | 高级数据挖掘工程师 | 5年经验
XiaoQiong.Zhang
数据挖掘人工智能
王明|高级数据挖掘工程师|5年经验(+86)189-xxxx-xxxx|
[email protected]|深圳市GitHub|LinkedIn工作经历科技前沿集团|高级数据挖掘工程师2021.06-至今核心贡献:主导建立公司AI中台,整合10+业务线数据资源,支撑日均5亿+数据处理研发自适应特征工程框架,特征生成效率提升3倍,减少人工特征工程工作量70%设计模型健康监测系统,关键业务模型异常响
- Python实例题:股票数据分析与预测系统
狐凄
实例python数据分析开发语言
目录Python实例题题目问题描述解题思路关键代码框架难点分析Python实例题题目股票数据分析与预测系统问题描述开发一个股票数据分析系统,实现以下功能:从公开API获取股票历史数据对数据进行清洗和特征工程实现技术指标计算(如MA、MACD、KDJ等)构建机器学习模型预测股价走势可视化展示分析结果提供交易策略建议解题思路使用requests库调用AlphaVantage或YahooFinanceA
- 深度学习入门指南:从基础概念到代码实践
软考和人工智能学堂
人工智能#深度学习Python开发经验深度学习人工智能
深度学习入门指南:从基础概念到代码实践1.深度学习概述深度学习是机器学习的一个分支,它通过模拟人脑神经元的工作方式,构建多层次的神经网络模型来处理复杂的数据模式。与传统机器学习方法相比,深度学习能够自动从原始数据中学习特征表示,无需过多的人工特征工程。深度学习已经在计算机视觉、自然语言处理、语音识别等领域取得了突破性进展。例如,ImageNet竞赛中深度学习模型的识别准确率已经超过人类水平,而GP
- Pandas:让数据起舞的Python魔法手册
xiaoqian9997
pandaspython开发语言其他
文章目录初识Pandas:数据界的瑞士军刀两大基石:Series与DataFrame数据加载:万能格式转换器数据清洗:丑小鸭变天鹅之术1️⃣缺失值处理2️⃣重复值清理3️⃣异常值处理数据操作:切片与切块的魔法数据筛选数据变形⏱️时间序列处理(Pandas大招!)实战案例:电商销售分析全流程步骤1️⃣:数据加载与初探步骤2️⃣:数据清洗与特征工程步骤3️⃣:多维分析(揭示商业洞察)避坑指南:新手常见
- Python领域数据挖掘的实战经验
AI天才研究院
计算AIAgent应用开发AI大模型企业级应用开发实战python数据挖掘动画ai
Python领域数据挖掘的实战经验:从新手到高手的全流程指南关键词:数据挖掘、Python实战、数据清洗、特征工程、模型训练、评估优化、应用场景摘要:本文以“做蛋糕”为类比,用通俗易懂的语言拆解数据挖掘全流程(数据采集→清洗→特征工程→模型训练→评估→应用),结合Python代码实战(含完整案例),分享从0到1的实战经验。无论你是刚入门的数据分析师,还是想提升实战能力的开发者,都能通过本文掌握数据
- 边缘计算算法与自动驾驶安全优化实践
智能计算研究中心
其他
内容概要在自动驾驶系统的安全优化进程中,边缘计算算法通过分布式算力部署与实时数据处理能力,为车辆决策层构建了低时延、高容错的技术底座。本文系统性分析联邦学习与生成对抗网络(GAN)的融合机制,在保护数据隐私的同时提升多节点模型的动态适应能力,并通过可解释性算法对决策逻辑进行可视化解析,增强系统透明度。针对复杂行车场景,数据预处理与特征工程的双向协同显著优化了障碍物识别与路径规划的鲁棒性,结合F1值
- 《打造你的第一个数据挖掘工具:用 scikit-learn 快速原型开发与高效特征工程指南》
清水白石008
pythonPython题库数据挖掘scikit-learn人工智能python
《打造你的第一个数据挖掘工具:用scikit-learn快速原型开发与高效特征工程指南》一、引言:当Python遇上数据挖掘从电商推荐、医疗预测,到工业预警与用户画像,数据挖掘已成为现代智能系统的核心。Python作为数据科学领域的通用语言,其简洁优雅的语法与丰富的库生态让从原型构想到落地部署变得前所未有地高效。在众多库中,scikit-learn是构建数据挖掘系统不可或缺的基石——它让你专注于逻
- 《从原始数据到精炼模型:用 Python 构建高效机器学习流水线的实战指南》
清水白石008
pythonPython题库python机器学习开发语言
《从原始数据到精炼模型:用Python构建高效机器学习流水线的实战指南》引言:从杂乱数据到智能决策的桥梁在过去十余年,机器学习的爆炸性增长引领着软件智能化的浪潮。而流水线(Pipeline)化构建流程,正是机器学习从实验室走向真实产品的关键。作为一名长期从事Python项目研发的开发者,我深知构建模型的挑战往往不在算法本身,而在数据的预处理、特征工程、验证逻辑与代码结构设计。本篇文章,我将分享一个
- BERT 模型微调与传统机器学习的对比
MYH516
bert机器学习人工智能
BERT微调与传统机器学习的区别和联系:传统机器学习流程传统机器学习处理文本分类通常包含以下步骤:特征工程:手动设计特征(如TF-IDF、词袋模型)模型训练:使用分类器(如SVM、随机森林、逻辑回归)特征和模型调优:反复调整特征和超参数BERT微调流程BERT微调的典型流程:预训练:使用大规模无标注数据预训练BERT模型数据准备:将文本转换为BERT输入格式(tokenize、添加特殊标记)模型微
- 机器学习专栏(36):逻辑回归与Softmax回归全解析(附完整代码与可视化)
Sonal_Lynn
人工智能专题机器学习逻辑回归回归
目录一、逻辑回归:概率世界的"温度计"1.1核心原理:从线性到概率的魔法转换1.2Sigmoid函数:概率转换的核心引擎1.3实战案例:鸢尾花二分类二、模型训练:损失函数的艺术2.1对数损失函数解析2.2正则化实战技巧三、Softmax回归:多分类的终极武器3.1数学原理深度解析3.2多分类实战技巧四、工业级应用指南4.1特征工程黄金法则4.2模型评估矩阵4.3超参数调优模板五、避坑指南:常见误区
- 【特征工程】机器学习的特征构造和筛选
调研论文中,看到datafun的一篇agent文章“智能不够,知识来凑”——知识驱动的金融决策智能体,里面提到了自动因子挖掘,感觉可以用来做机器学习的“特征工程”。第一部分介绍如何“构造特征”,第二部分介绍如何“分析特征重要度”。第二部分,有一些经济学中的内容,可以忽略。1.构造特征1.1自动因子挖掘领域概述自动因子挖掘,也常被称为“AI因子挖掘”或“算法化Alpha发现”,是指利用机器学习、特别
- 可解释性医疗影像算法解析
智能计算研究中心
其他
内容概要在医疗影像分析领域,可解释性算法的核心价值在于建立临床诊断的透明化决策路径。本文通过系统性解构深度学习框架下的技术链条,揭示从数据标注、特征工程到模型评估的全流程透明度构建方法。研究聚焦卷积神经网络(CNN)与注意力机制的双向协同作用,量化分析其在肺结节检测、肿瘤分割等场景中的特征可视化效果。为平衡算法性能与可解释性需求,文中提出基于多维度评估指标的优化框架(见表1),涵盖准确率、召回率、
- 如何确定微服务的粒度与边界
确定微服务的粒度与边界在完成初步服务拆分之后,架构师往往会遇到另一个难题:该拆到多细?哪些功能可以归并为一个服务,哪些又必须单独部署?这就是“服务粒度与边界”的问题。本节将围绕实际架构经验,介绍粒度控制的判断方法,并结合AI场景中的模型服务、特征工程等模块,展示边界划定的关键策略。服务粒度过大与过小都不可取服务粒度是衡量每个微服务功能范围的指标。粒度过大容易导致服务变得臃肿,难以扩展;粒度过小则会
- Scikit-learn:开启量化价值投资的新征程
量化价值投资入门到精通
scikit-learnpython机器学习ai
Scikit-learn:开启量化价值投资的新征程关键词:Scikit-learn、量化投资、价值投资、机器学习、特征工程、投资组合优化、金融数据分析摘要:本文深入探讨了如何利用Scikit-learn这一强大的Python机器学习库来构建量化价值投资系统。文章从基础概念出发,详细介绍了价值投资的量化实现方法,包括数据获取与处理、特征工程、模型构建与优化等关键环节。通过实际案例展示了如何使用机器学
- sklearn 和 pytorch tensorflow什么关系
MYH516
sklearnpytorchtensorflow
Scikit-learn、PyTorch和TensorFlow是Python生态中互补的机器学习库,但它们的定位和应用场景有明显区别:核心定位对比库主要定位抽象层级核心优势典型场景Scikit-learn传统机器学习(浅层模型)高简单易用、丰富的工具链数据预处理、分类/回归、特征工程PyTorch深度学习(动态计算图)中低灵活、易于调试、学术友好研究原型、自然语言处理、计算机视觉TensorFlo
- AI入门——AI大模型、深度学习、机器学习总结
超级-码力
人工智能深度学习机器学习AIGC
以下是对AI深度学习、机器学习相关核心技术的总结与拓展,结合技术演进逻辑与前沿趋势,以全新视角呈现关键知识点一、深度学习:从感知到认知的技术革命核心突破:自动化特征工程的范式变革深度学习通过多层神经网络架构(如卷积神经网络CNN、循环神经网络RNN),实现了从原始数据中自主学习分层特征的能力。相较于传统机器学习依赖人工设计特征(如SVM的核函数、手工提取的图像边缘特征),其核心优势体现在:层次化抽
- 深度学习驱动的智能化革命:技术演进与跨行业实践
accurater
c++算法笔记深度学习人工智能科技
第一章人工智能的范式转变与深度学习的崛起1.1从规则驱动到数据驱动的技术跃迁传统AI(如专家系统)依赖人工定义逻辑规则,而深度学习通过端到端学习机制自动捕获数据内在规律。以ImageNet竞赛为例,2012年AlexNet将错误率从26%降至15%,标志着数据驱动时代的到来。核心差异对比(表格):维度传统AI深度学习特征工程人工设计自动提取可扩展性场景受限跨领域迁移数据依赖性低(规则明确)高(需大
- 打卡第十八天
Shining_Jiang
人工智能机器学习
聚类后的分析:推断簇的类型知识点回顾:推断簇含义的两个思路:先选特征和后选特征。先选特征是指在聚类之前根据领域知识或假设选择特定的特征进行聚类;后选特征则是在聚类完成后,通过分析簇的特征来推断其含义。通过可视化图形借助AI定义簇的含义。可视化工具如散点图、热图等可以帮助直观地观察簇的分布和特征,结合AI算法可以更准确地定义簇的含义。科研逻辑闭环:通过精度判断特征工程价值。在聚类分析中,特征工程的质
- AI原生时代:智能推荐系统的架构设计与优化
AI智能应用
Python入门实战AI大模型应用入门实战与进阶AI-nativeai
AI原生时代:智能推荐系统的架构设计与优化关键词:AI原生、智能推荐系统、架构设计、算法优化、个性化推荐、深度学习、实时计算摘要:本文深入探讨AI原生时代下智能推荐系统的架构设计与优化策略。我们将从基础概念出发,逐步解析推荐系统的核心组件和工作原理,并通过实际案例展示如何构建高性能的推荐系统。文章涵盖从数据收集、特征工程、算法选择到系统优化的全流程,同时展望未来发展趋势和挑战。背景介绍目的和范围本
- 解锁C#机器学习的秘密——深入探讨数据预处理与特征工程
墨夶
C#学习资料1c#机器学习人工智能
在当今数据驱动的世界里,构建一个高效且准确的机器学习模型不仅依赖于算法的选择,更取决于如何准备和处理输入数据。对于使用C#进行开发的工程师来说,掌握正确的数据预处理技术和特征工程技术是至关重要的。本文将带领读者深入了解C#中实现这些技术的具体方法,并提供详尽的代码示例来展示如何有效地提升模型性能。一、随着.NETCore和ML.NET的推出,C#开发者现在有了强大的工具集用于创建复杂的机器学习应用
- python归一化互相关_python 特征工程 归一化 计算相关性矩阵
仙女山的仙女鹿
python归一化互相关
数据归一化的2种方法以及计算相关系数矩阵数据源源码在文章末尾有些数据没什么作用或者影响不大为了增加训练迭代速度就需要降维然后挑选出其中的相关性比较高得维度进行训练.导入和读取数据,简单方便快就好.对于缺失值,这里简单得用均值进行填充可以看到图中红色部分已经用均值填充好了,在看一下数据描述,所有特征的计数统计量count都已经变成11017.然后继续下面的归一化操作方法一:归一化的公式就是(每个值-
- java的(PO,VO,TO,BO,DAO,POJO)
Cb123456
VOTOBOPOJODAO
转:
http://www.cnblogs.com/yxnchinahlj/archive/2012/02/24/2366110.html
-------------------------------------------------------------------
O/R Mapping 是 Object Relational Mapping(对象关系映
- spring ioc原理(看完后大家可以自己写一个spring)
aijuans
spring
最近,买了本Spring入门书:spring In Action 。大致浏览了下感觉还不错。就是入门了点。Manning的书还是不错的,我虽然不像哪些只看Manning书的人那样专注于Manning,但怀着崇敬 的心情和激情通览了一遍。又一次接受了IOC 、DI、AOP等Spring核心概念。 先就IOC和DI谈一点我的看法。IO
- MyEclipse 2014中Customize Persperctive设置无效的解决方法
Kai_Ge
MyEclipse2014
高高兴兴下载个MyEclipse2014,发现工具条上多了个手机开发的按钮,心生不爽就想弄掉他!
结果发现Customize Persperctive失效!!
有说更新下就好了,可是国内Myeclipse访问不了,何谈更新...
so~这里提供了更新后的一下jar包,给大家使用!
1、将9个jar复制到myeclipse安装目录\plugins中
2、删除和这9个jar同包名但是版本号较
- SpringMvc上传
120153216
springMVC
@RequestMapping(value = WebUrlConstant.UPLOADFILE)
@ResponseBody
public Map<String, Object> uploadFile(HttpServletRequest request,HttpServletResponse httpresponse) {
try {
//
- Javascript----HTML DOM 事件
何必如此
JavaScripthtmlWeb
HTML DOM 事件允许Javascript在HTML文档元素中注册不同事件处理程序。
事件通常与函数结合使用,函数不会在事件发生前被执行!
注:DOM: 指明使用的 DOM 属性级别。
1.鼠标事件
属性  
- 动态绑定和删除onclick事件
357029540
JavaScriptjquery
因为对JQUERY和JS的动态绑定事件的不熟悉,今天花了好久的时间才把动态绑定和删除onclick事件搞定!现在分享下我的过程。
在我的查询页面,我将我的onclick事件绑定到了tr标签上同时传入当前行(this值)参数,这样可以在点击行上的任意地方时可以选中checkbox,但是在我的某一列上也有一个onclick事件是用于下载附件的,当
- HttpClient|HttpClient请求详解
7454103
apache应用服务器网络协议网络应用Security
HttpClient 是 Apache Jakarta Common 下的子项目,可以用来提供高效的、最新的、功能丰富的支持 HTTP 协议的客户端编程工具包,并且它支持 HTTP 协议最新的版本和建议。本文首先介绍 HTTPClient,然后根据作者实际工作经验给出了一些常见问题的解决方法。HTTP 协议可能是现在 Internet 上使用得最多、最重要的协议了,越来越多的 Java 应用程序需
- 递归 逐层统计树形结构数据
darkranger
数据结构
将集合递归获取树形结构:
/**
*
* 递归获取数据
* @param alist:所有分类
* @param subjname:对应统计的项目名称
* @param pk:对应项目主键
* @param reportList: 最后统计的结果集
* @param count:项目级别
*/
public void getReportVO(Arr
- 访问WEB-INF下使用frameset标签页面出错的原因
aijuans
struts2
<frameset rows="61,*,24" cols="*" framespacing="0" frameborder="no" border="0">
- MAVEN常用命令
avords
Maven库:
http://repo2.maven.org/maven2/
Maven依赖查询:
http://mvnrepository.com/
Maven常用命令: 1. 创建Maven的普通java项目: mvn archetype:create -DgroupId=packageName 
- PHP如果自带一个小型的web服务器就好了
houxinyou
apache应用服务器WebPHP脚本
最近单位用PHP做网站,感觉PHP挺好的,不过有一些地方不太习惯,比如,环境搭建。PHP本身就是一个网站后台脚本,但用PHP做程序时还要下载apache,配置起来也不太很方便,虽然有好多配置好的apache+php+mysq的环境,但用起来总是心里不太舒服,因为我要的只是一个开发环境,如果是真实的运行环境,下个apahe也无所谓,但只是一个开发环境,总有一种杀鸡用牛刀的感觉。如果php自己的程序中
- NoSQL数据库之Redis数据库管理(list类型)
bijian1013
redis数据库NoSQL
3.list类型及操作
List是一个链表结构,主要功能是push、pop、获取一个范围的所有值等等,操作key理解为链表的名字。Redis的list类型其实就是一个每个子元素都是string类型的双向链表。我们可以通过push、pop操作从链表的头部或者尾部添加删除元素,这样list既可以作为栈,又可以作为队列。
&nbs
- 谁在用Hadoop?
bingyingao
hadoop数据挖掘公司应用场景
Hadoop技术的应用已经十分广泛了,而我是最近才开始对它有所了解,它在大数据领域的出色表现也让我产生了兴趣。浏览了他的官网,其中有一个页面专门介绍目前世界上有哪些公司在用Hadoop,这些公司涵盖各行各业,不乏一些大公司如alibaba,ebay,amazon,google,facebook,adobe等,主要用于日志分析、数据挖掘、机器学习、构建索引、业务报表等场景,这更加激发了学习它的热情。
- 【Spark七十六】Spark计算结果存到MySQL
bit1129
mysql
package spark.examples.db
import java.sql.{PreparedStatement, Connection, DriverManager}
import com.mysql.jdbc.Driver
import org.apache.spark.{SparkContext, SparkConf}
object SparkMySQLInteg
- Scala: JVM上的函数编程
bookjovi
scalaerlanghaskell
说Scala是JVM上的函数编程一点也不为过,Scala把面向对象和函数型编程这两种主流编程范式结合了起来,对于熟悉各种编程范式的人而言Scala并没有带来太多革新的编程思想,scala主要的有点在于Java庞大的package优势,这样也就弥补了JVM平台上函数型编程的缺失,MS家.net上已经有了F#,JVM怎么能不跟上呢?
对本人而言
- jar打成exe
bro_feng
java jar exe
今天要把jar包打成exe,jsmooth和exe4j都用了。
遇见几个问题。记录一下。
两个软件都很好使,网上都有图片教程,都挺不错。
首先肯定是要用自己的jre的,不然不能通用,其次别忘了把需要的lib放到classPath中。
困扰我很久的一个问题是,我自己打包成功后,在一个同事的没有装jdk的电脑上运行,就是不行,报错jvm.dll为无效的windows映像,如截图
最后发现
- 读《研磨设计模式》-代码笔记-策略模式-Strategy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换。策略模式让算法独立于使用它的客户而独立变化
简单理解:
1、将不同的策略提炼出一个共同接口。这是容易的,因为不同的策略,只是算法不同,需要传递的参数
- cmd命令值cvfM命令
chenyu19891124
cmd
cmd命令还真是强大啊。今天发现jar -cvfM aa.rar @aaalist 就这行命令可以根据aaalist取出相应的文件
例如:
在d:\workspace\prpall\test.java 有这样一个文件,现在想要将这个文件打成一个包。运行如下命令即可比如在d:\wor
- OpenJWeb(1.8) Java Web应用快速开发平台
comsci
java框架Web项目管理企业应用
OpenJWeb(1.8) Java Web应用快速开发平台的作者是我们技术联盟的成员,他最近推出了新版本的快速应用开发平台 OpenJWeb(1.8),我帮他做做宣传
OpenJWeb快速开发平台以快速开发为核心,整合先进的java 开源框架,本着自主开发+应用集成相结合的原则,旨在为政府、企事业单位、软件公司等平台用户提供一个架构透
- Python 报错:IndentationError: unexpected indent
daizj
pythontab空格缩进
IndentationError: unexpected indent 是缩进的问题,也有可能是tab和空格混用啦
Python开发者有意让违反了缩进规则的程序不能通过编译,以此来强制程序员养成良好的编程习惯。并且在Python语言里,缩进而非花括号或者某种关键字,被用于表示语句块的开始和退出。增加缩进表示语句块的开
- HttpClient 超时设置
dongwei_6688
httpclient
HttpClient中的超时设置包含两个部分:
1. 建立连接超时,是指在httpclient客户端和服务器端建立连接过程中允许的最大等待时间
2. 读取数据超时,是指在建立连接后,等待读取服务器端的响应数据时允许的最大等待时间
在HttpClient 4.x中如下设置:
HttpClient httpclient = new DefaultHttpC
- 小鱼与波浪
dcj3sjt126com
一条小鱼游出水面看蓝天,偶然间遇到了波浪。 小鱼便与波浪在海面上游戏,随着波浪上下起伏、汹涌前进。 小鱼在波浪里兴奋得大叫:“你每天都过着这么刺激的生活吗?简直太棒了。” 波浪说:“岂只每天过这样的生活,几乎每一刻都这么刺激!还有更刺激的,要有潮汐变化,或者狂风暴雨,那才是兴奋得心脏都会跳出来。” 小鱼说:“真希望我也能变成一个波浪,每天随着风雨、潮汐流动,不知道有多么好!” 很快,小鱼
- Error Code: 1175 You are using safe update mode and you tried to update a table
dcj3sjt126com
mysql
快速高效用:SET SQL_SAFE_UPDATES = 0;下面的就不要看了!
今日用MySQL Workbench进行数据库的管理更新时,执行一个更新的语句碰到以下错误提示:
Error Code: 1175
You are using safe update mode and you tried to update a table without a WHERE that
- 枚举类型详细介绍及方法定义
gaomysion
enumjavaee
转发
http://developer.51cto.com/art/201107/275031.htm
枚举其实就是一种类型,跟int, char 这种差不多,就是定义变量时限制输入的,你只能够赋enum里面规定的值。建议大家可以看看,这两篇文章,《java枚举类型入门》和《C++的中的结构体和枚举》,供大家参考。
枚举类型是JDK5.0的新特征。Sun引进了一个全新的关键字enum
- Merge Sorted Array
hcx2013
array
Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array.
Note:You may assume that nums1 has enough space (size that is
- Expression Language 3.0新特性
jinnianshilongnian
el 3.0
Expression Language 3.0表达式语言规范最终版从2013-4-29发布到现在已经非常久的时间了;目前如Tomcat 8、Jetty 9、GlasshFish 4已经支持EL 3.0。新特性包括:如字符串拼接操作符、赋值、分号操作符、对象方法调用、Lambda表达式、静态字段/方法调用、构造器调用、Java8集合操作。目前Glassfish 4/Jetty实现最好,对大多数新特性
- 超越算法来看待个性化推荐
liyonghui160com
超越算法来看待个性化推荐
一提到个性化推荐,大家一般会想到协同过滤、文本相似等推荐算法,或是更高阶的模型推荐算法,百度的张栋说过,推荐40%取决于UI、30%取决于数据、20%取决于背景知识,虽然本人不是很认同这种比例,但推荐系统中,推荐算法起的作用起的作用是非常有限的。
就像任何
- 写给Javascript初学者的小小建议
pda158
JavaScript
一般初学JavaScript的时候最头痛的就是浏览器兼容问题。在Firefox下面好好的代码放到IE就不能显示了,又或者是在IE能正常显示的代码在firefox又报错了。 如果你正初学JavaScript并有着一样的处境的话建议你:初学JavaScript的时候无视DOM和BOM的兼容性,将更多的时间花在 了解语言本身(ECMAScript)。只在特定浏览器编写代码(Chrome/Fi
- Java 枚举
ShihLei
javaenum枚举
注:文章内容大量借鉴使用网上的资料,可惜没有记录参考地址,只能再传对作者说声抱歉并表示感谢!
一 基础 1)语法
枚举类型只能有私有构造器(这样做可以保证客户代码没有办法新建一个enum的实例)
枚举实例必须最先定义
2)特性
&nb
- Java SE 6 HotSpot虚拟机的垃圾回收机制
uuhorse
javaHotSpotGC垃圾回收VM
官方资料,关于Java SE 6 HotSpot虚拟机的garbage Collection,非常全,英文。
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
Java SE 6 HotSpot[tm] Virtual Machine Garbage Collection Tuning
&