DataWhale数据分析打卡营
开源内容
统计2019年及以后全年计算机各个方向论文的数量
Kaggle上的一个数据集,可以理解为计算机领域论文信息库。
是一个有很多行的表,每一行代表一篇论文,记录每一篇论文的作者、标签、发表年份等信息。
https://arxiv.org/category_taxonomy
ArXiv数据集中一篇论文会有多个标签,标签一般是某领域下的细分方向,比如NLP之于人工智能。
因此通过网页爬虫,可以获得领域下所有的细分方向信息,这样在已知文章标签的情况下,就能对应为之匹配一个大方向了。
代码来自Datawhale开源内容,只做了重新编排,非原创
import json
import pandas as pd
def readArxivFile(path, columns=['id', 'submitter', 'authors', 'title', 'comments', 'journal-ref', 'doi',
'report-no', 'categories', 'license', 'abstract', 'versions',
'update_date', 'authors_parsed'], count=None):
'''
定义读取文件的函数
path: 文件路径
columns: 需要选择的列
count: 读取行数
'''
data = []
with open(path, 'r') as f:
for idx, line in enumerate(f):
if idx == count:
break
d = json.loads(line)
d = {
col : d[col] for col in columns}
data.append(d)
data = pd.DataFrame(data)
return data
data = readArxivFile('arxiv-metadata-oai-snapshot.json', ['id', 'categories', 'update_date'])
data["year"] = pd.to_datetime(data["update_date"]).dt.year #将update_date从例如2019-02-20的str变为datetime格式,并提取处year
del data["update_date"] #删除 update_date特征,其使命已完成
data = data[data["year"] >= 2019] #找出 year 中2019年以后的数据,并将其他数据删除
data.groupby(['categories','year']) #以 categories 进行排序,如果同一个categories 相同则使用 year 特征进行排序
data.reset_index(drop=True, inplace=True) #重新编号
看代码的时候发现的小漏洞,目前的代码中有多个标签的文章是不能完成下一步的merge的。
但因为我只停留在阅读代码的阶段,就也没有自己实现了。大意如下
from bs4 import BeautifulSoup #用于爬取arxiv的数据
import re #用于正则表达式,匹配字符串的模式
import requests #用于网络连接,发送网络请求,使用域名获取对应信息
import pandas as pd #数据处理,数据分析
#爬取所有的类别
website_url = requests.get('https://arxiv.org/category_taxonomy').text #获取网页的文本数据
soup = BeautifulSoup(website_url,'lxml') #爬取数据,这里使用lxml的解析器,加速
root = soup.find('div',{
'id':'category_taxonomy_list'}) #找出 BeautifulSoup 对应的标签入口
tags = root.find_all(["h2","h3","h4","p"], recursive=True) #读取 tags
#初始化 str 和 list 变量
level_1_name = ""
level_2_name = ""
level_2_code = ""
level_1_names = []
level_2_codes = []
level_2_names = []
level_3_codes = []
level_3_names = []
level_3_notes = []
#进行
for t in tags:
if t.name == "h2":
level_1_name = t.text
level_2_code = t.text
level_2_name = t.text
elif t.name == "h3":
raw = t.text
level_2_code = re.sub(r"(.*)\((.*)\)",r"\2",raw) #正则表达式:模式字符串:(.*)\((.*)\);被替换字符串"\2";被处理字符串:raw
level_2_name = re.sub(r"(.*)\((.*)\)",r"\1",raw)
elif t.name == "h4":
raw = t.text
level_3_code = re.sub(r"(.*) \((.*)\)",r"\1",raw)
level_3_name = re.sub(r"(.*) \((.*)\)",r"\2",raw)
elif t.name == "p":
notes = t.text
level_1_names.append(level_1_name)
level_2_names.append(level_2_name)
level_2_codes.append(level_2_code)
level_3_names.append(level_3_name)
level_3_codes.append(level_3_code)
level_3_notes.append(notes)
#根据以上信息生成dataframe格式的数据
df_taxonomy = pd.DataFrame({
'group_name' : level_1_names,
'archive_name' : level_2_names,
'archive_id' : level_2_codes,
'category_name' : level_3_names,
'categories' : level_3_codes,
'category_description': level_3_notes
})
#按照 "group_name" 进行分组,在组内使用 "archive_name" 进行排序
df_taxonomy.groupby(["group_name","archive_name"])
# 合并
_df = data.merge(df_taxonomy, on="categories", how="left").drop_duplicates(["id","group_name"])
# 分类、聚合、排序、重新编号
_df = _df.groupby("group_name").agg({
"id":"count"}).sort_values(by="id",ascending=False).reset_index()
import matplotlib.pyplot as plt #画图工具
fig = plt.figure(figsize=(15,12))
explode = (0, 0, 0, 0.2, 0.3, 0.3, 0.2, 0.1)
plt.pie(_df["id"], labels=_df["group_name"], autopct='%1.2f%%', startangle=160, explode=explode)
plt.tight_layout()
plt.show()
group_name="Computer Science"
cats = data.merge(df_taxonomy, on="categories").query("group_name == @group_name")
cats.groupby(["year","category_name"]).count().reset_index().pivot(index="category_name", columns="year",values="id")