项目后台组件运用了Schedule每分钟启动一个job把数据发送到kafka(生产者),通过kafka的负载均衡分发到消费者中。在某个夜黑风高的夜晚,运维GG通过监控发现kafka写入出现每分钟不连续的现象,在没有数据写入的时段,消费线程一直处于等待状态。由于除了生产者任务job之外,还在存在其他定时job,随着业务的发展,其他job的数据量上升之后,加上Schedule调度使用了默认的配置,在一个分钟内处理不完所有的定时job,导致下一分钟的job任务得到不到执行,从而导致了业务延迟。
通过下面的例子来进行模拟,创建两个一分钟执行一次的定时任务,一个任务能够在一分钟内正常完成,另一个在一分钟内完成不了。
能够正常完成的job,开始执行输出RunJob is running,然后一个for循环,模拟业务跑一会,然后输出RunJob is end,结束。
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.stereotype.Component;
@Component
public class RunJob {
private static final Logger logger = LoggerFactory.getLogger(RunJob.class);
@Scheduled(cron = "0 0/1 * * * ?")
public void run() {
logger.info("RunJob is running");
for(int i=0; i<100;i++) {
}
logger.info("RunJob is end");
}
}
一分钟内不能执行结束的job,首先输出PendingJob is running,然后start=当前时间的毫秒数+两分钟的毫秒数,相当于让时间往前推两分钟,进入一个循环,当时间走到两分钟后,才能跳出循环,job才能够结束。
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.stereotype.Component;
@Component
public class PendingJob {
private static final Logger logger = LoggerFactory.getLogger(PendingJob.class);
@Scheduled(cron = "0 0/1 * * * ?")
public void run() {
logger.info("PendingJob is running");
long start = System.currentTimeMillis() + (2 * 60 * 1000);
while (true) {
long end = System.currentTimeMillis();
if(end >= start) {
break;
}
}
logger.info("PendingJob is end");
}
}
执行结果如下截图,可知:PendingJob先执行的话,只要等两分钟后PendingJob执行完了,RunJob才能够执行。在56分PendingJob开始执行,58分PendingJob才执行结束,这段时间内RunJob并没有得到执行,58分RunJob才得到执行,当下一次PendingJob执行的时候又出现了一样的现象。可知在Schedule默认设置下,是单线程阻塞执行地去执行任务,当一个执行时间较长的任务获得执行调度之后,在它没有被执行完成之前,其他job定时任务并不能得到执行。
为什么默认的Schedule是单线程执行的呢?我们在使用定时调度的时候会在入口类加入@EnableScheduling注解,如下
@SpringBootApplication
@EnableScheduling
public class ShowApplication {
public static void main(String[] args) {
SpringApplication.run(ShowApplication.class, args);
}
}
进入@EnableScheduling注解如下
/*
* @author Chris Beams
* @author Juergen Hoeller
* @since 3.1
* @see Scheduled
* @see SchedulingConfiguration
* @see SchedulingConfigurer
* @see ScheduledTaskRegistrar
* @see Trigger
* @see ScheduledAnnotationBeanPostProcessor
*/
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Import(SchedulingConfiguration.class)
@Documented
public @interface EnableScheduling {
}
然后进入ScheduledAnnotationBeanPostProcessor,维护着一个任务注册器ScheduledTaskRegistrar属性
public class ScheduledAnnotationBeanPostProcessor
implements ScheduledTaskHolder, MergedBeanDefinitionPostProcessor, DestructionAwareBeanPostProcessor,
Ordered, EmbeddedValueResolverAware, BeanNameAware, BeanFactoryAware, ApplicationContextAware,
SmartInitializingSingleton, ApplicationListener, DisposableBean {
private final ScheduledTaskRegistrar registrar;
public ScheduledAnnotationBeanPostProcessor() {
this.registrar = new ScheduledTaskRegistrar();
}
}
当spring完成对该bean的加载之后,会调用registrar.afterPropertiesSet()来配置调度线程池的相关信息,如下:
public class ScheduledAnnotationBeanPostProcessor
implements ScheduledTaskHolder, MergedBeanDefinitionPostProcessor, DestructionAwareBeanPostProcessor,
Ordered, EmbeddedValueResolverAware, BeanNameAware, BeanFactoryAware, ApplicationContextAware,
SmartInitializingSingleton, ApplicationListener, DisposableBean {
private final ScheduledTaskRegistrar registrar;
public ScheduledAnnotationBeanPostProcessor() {
this.registrar = new ScheduledTaskRegistrar();
}
@Override
public void onApplicationEvent(ContextRefreshedEvent event) {
if (event.getApplicationContext() == this.applicationContext) {
// Running in an ApplicationContext -> register tasks this late...
// giving other ContextRefreshedEvent listeners a chance to perform
// their work at the same time (e.g. Spring Batch's job registration).
finishRegistration();
}
}
private void finishRegistration() {
// 省略
this.registrar.afterPropertiesSet();
}
}
在ScheduledTaskRegistrar中维护着ScheduledExecutorService线程池,默认的情况下是没有设置TaskScheduler的,所以该属性为null,那么就会执行this.localExecutor = Executors.newSingleThreadScheduledExecutor(); this.taskScheduler = new ConcurrentTaskScheduler(this.localExecutor);
newSingleThreadScheduledExecutor()里创建了一个核心线程数大小为1的线程池。
public class ScheduledTaskRegistrar implements ScheduledTaskHolder, InitializingBean, DisposableBean {
@Nullable
private TaskScheduler taskScheduler;
@Nullable
private ScheduledExecutorService localExecutor;
@Override
public void afterPropertiesSet() {
scheduleTasks();
}
/**
* Schedule all registered tasks against the underlying
* {@linkplain #setTaskScheduler(TaskScheduler) task scheduler}.
*/
@SuppressWarnings("deprecation")
protected void scheduleTasks() {
if (this.taskScheduler == null) {
this.localExecutor = Executors.newSingleThreadScheduledExecutor();
this.taskScheduler = new ConcurrentTaskScheduler(this.localExecutor);
}
if (this.triggerTasks != null) {
for (TriggerTask task : this.triggerTasks) {
addScheduledTask(scheduleTriggerTask(task));
}
}
if (this.cronTasks != null) {
for (CronTask task : this.cronTasks) {
addScheduledTask(scheduleCronTask(task));
}
}
if (this.fixedRateTasks != null) {
for (IntervalTask task : this.fixedRateTasks) {
addScheduledTask(scheduleFixedRateTask(task));
}
}
if (this.fixedDelayTasks != null) {
for (IntervalTask task : this.fixedDelayTasks) {
addScheduledTask(scheduleFixedDelayTask(task));
}
}
}
}
知道原因之后,我们可以通过代码手动配置ScheduledTaskRegistrar的TaskScheduler
import org.springframework.context.annotation.Configuration;
import org.springframework.scheduling.annotation.SchedulingConfigurer;
import org.springframework.scheduling.config.ScheduledTaskRegistrar;
import java.util.concurrent.Executors;
@Configuration
public class ScheduleConfig implements SchedulingConfigurer {
@Override
public void configureTasks(ScheduledTaskRegistrar scheduledTaskRegistrar) {
scheduledTaskRegistrar.setScheduler(Executors.newScheduledThreadPool(2));
}
}
设置之后,再次执行,结果如下,当PendingJob没有执行完成,RunJob也能得到调度执行。