简易版的SVM中,SMO算法中α的选择采取遍历且随机的方式,见http://blog.csdn.net/xiaonannanxn/article/details/52372085
优化版中,我们采取启发式方式选择,即αj选择max|Ei-Ej|,这样就可以让每次更新的步长更大,减少我们的迭代次数,更新上次的SVM.py
# coding:utf-8
from numpy import *
import matplotlib.pyplot as plt
def loadDataSet(filename):
dataMat = []
labelMat = []
fr = open(filename)
for line in fr.readlines():
lineArr = line.strip().split('\t')
dataMat.append([float(lineArr[0]), float(lineArr[1])])
labelMat.append(float(lineArr[2]))
return dataMat, labelMat
def selectJrand(i, m):
j = i
while j == i:
j = int(random.uniform(0, m))
return j
def clipAlpha(aj, H, L):
if aj > H:
aj = H
if aj < L:
aj = L
return aj
def show(dataArr, labelArr, alphas, b):
for i in xrange(len(labelArr)):
if labelArr[i] == -1:
plt.plot(dataArr[i][0], dataArr[i][1], 'or')
elif labelArr[i] == 1:
plt.plot(dataArr[i][0], dataArr[i][1], 'Dg')
# print alphas.shape, mat(labelArr).shape, multiply(alphas, mat(labelArr)).shape
c = sum(multiply(multiply(alphas.T, mat(labelArr)), mat(dataArr).T), axis=1)
minY = min(m[1] for m in dataArr)
maxY = max(m[1] for m in dataArr)
plt.plot([sum((- b - c[1] * minY) / c[0]), sum((- b - c[1] * maxY) / c[0])], [minY, maxY])
plt.plot([sum((- b + 1 - c[1] * minY) / c[0]), sum((- b + 1 - c[1] * maxY) / c[0])], [minY, maxY])
plt.plot([sum((- b - 1 - c[1] * minY) / c[0]), sum((- b - 1 - c[1] * maxY) / c[0])], [minY, maxY])
plt.show()
class optStruct:
def __init__(self, dataMatIn, classLabels, C, toler):
self.X = dataMatIn
self.labelMat = classLabels
self.C = C
self.tol = toler
self.m = shape(dataMatIn)[0]
self.alphas = mat(zeros((self.m, 1)))
self.b = 0
self.eCache = mat(zeros((self.m, 2)))
def calcEk(oS, k):
fXk = float(multiply(oS.alphas, oS.labelMat).T * (oS.X * oS.X[k, :].T)) + oS.b
Ek = fXk - float(oS.labelMat[k])
return Ek
def selectJ(i, oS, Ei):
maxK = -1
maxDeltaE = 0
Ej = 0
oS.eCache[i] = [1, Ei]
validEcacheList = nonzero(oS.eCache[:, 0].A)[0]
if len(validEcacheList) > 1:
for k in validEcacheList:
if k == i:
continue
Ek = calcEk(oS, k)
deltaE = abs(Ei - Ek)
if deltaE > maxDeltaE:
maxK = k
maxDeltaE = deltaE
Ej = Ek
return maxK, Ej
else:
j = selectJrand(i, oS.m)
Ej = calcEk(oS, j)
return j, Ej
def updateEk(oS, k):
Ek = calcEk(oS, k)
oS.eCache[k] = [1, Ek]
def innerL(i, oS):
Ei = calcEk(oS, i)
if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C))\
or ((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
j, Ej = selectJ(i, oS, Ei)
alphaIold = oS.alphas[i].copy()
alphaJold = oS.alphas[j].copy()
if oS.labelMat[i] != oS.labelMat[j]:
L = max(0, oS.alphas[j] - oS.alphas[i])
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
else:
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
if L == H:
print "L == H"
return 0
eta = 2.0 * oS.X[i, :] * oS.X[j, :].T - oS.X[i, :] * oS.X[i, :].T - oS.X[j, :] * oS.X[j, :].T
if eta >= 0:
print "eta >= 0"
return 0
oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta
oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)
updateEk(oS, j)
if abs(oS.alphas[j] - alphaJold) < 0.00001:
print "j not moving enough"
return 0
oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alphaJold - oS.alphas[j])
updateEk(oS, i)
b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[i, :].T \
- oS.labelMat[j] * (oS.alphas[j] - alphaJold) * oS.X[i, :] * oS.X[j, :].T
b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[j, :].T \
- oS.labelMat[j] * (oS.alphas[j] - alphaJold) * oS.X[j, :] * oS.X[j, :].T
if 0 < oS.alphas[i] < oS.C:
oS.b = b1
elif 0 < oS.alphas[j] < oS.C:
oS.b = b2
else:
oS.b = (b1 + b2) / 2.0
return 1
else:
return 0
def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin', 0)):
oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler)
Iter = 0
entireSet = True
alphaPairsChanged = 0
while Iter < maxIter and (alphaPairsChanged > 0 or entireSet):
alphaPairsChanged = 0
if entireSet:
for i in xrange(oS.m):
alphaPairsChanged += innerL(i, oS)
print "fullSet, iter: %d i:%d, pairs changed %d" % (Iter, i, alphaPairsChanged)
Iter += 1
else:
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
for i in nonBoundIs:
alphaPairsChanged += innerL(i, oS)
print "non-bound, iter: %d i:%d, pairs changed %d" % (Iter, i, alphaPairsChanged)
Iter += 1
if entireSet:
entireSet = False
elif alphaPairsChanged == 0:
entireSet = True
print "iteration number: %d" % Iter
return oS.b, oS.alphas
在main.py中测试
import SVM
dataArr, labelArr = SVM.loadDataSet('testSet.txt')
b, alphas = SVM.smoP(dataArr, labelArr, 0.6, 0.001, 40)
SVM.show(dataArr, labelArr, alphas, b)