redis淘汰策略原理-周期删除

基于redis5.0

入口

redis周期删除过期数据的函数是activeExpireCycle,有两个地方调用这个函数:

  • beforeSleep:redis在阻塞等待文件事件之前,即进程阻塞之前,会调用beforeSleep函数,清理过期数据的模式是ACTIVE_EXPIRE_CYCLE_FAST,快速清理,不影响主流程。
// server.c
/* This function gets called every time Redis is entering the
 * main loop of the event driven library, that is, before to sleep
 * for ready file descriptors. */
void beforeSleep(struct aeEventLoop *eventLoop) {
    ……
    /* Run a fast expire cycle (the called function will return
     * ASAP if a fast cycle is not needed). */
    if (server.active_expire_enabled && server.masterhost == NULL)
        activeExpireCycle(ACTIVE_EXPIRE_CYCLE_FAST);
    ……
}        
  • databasesCron:redis周期任务,清理过期数据的模式是ACTIVE_EXPIRE_CYCLE_SLOW,相对ACTIVE_EXPIRE_CYCLE_FAST执行时间稍微长点。
// server.c
void databasesCron(void) {
    /* Expire keys by random sampling. Not required for slaves
     * as master will synthesize DELs for us. */
    if (server.active_expire_enabled) {
        if (server.masterhost == NULL) {
            activeExpireCycle(ACTIVE_EXPIRE_CYCLE_SLOW);
        } else {
            expireSlaveKeys();
        }
    }
    ……
}      

当前节点为master时,server.masterhost == NULL,才执行activeExpireCycle函数。

清理

是否允许FAST模式

// server.h
int active_expire_effort;       /* 努力力度,1-10取值范围,默认 1,也就是遍历过期字典的力度,力度越大,遍历数量越多,但是性能损耗更多*/
double stat_expired_stale_perc; /* 已过期键占比近似值:以先前值占比95%,本次调用运行值占比 5%进行加权平均 */    

// expire.c
#define ACTIVE_EXPIRE_CYCLE_ACCEPTABLE_STALE 10 /* % of stale keys after which we do extra efforts. */  
#define ACTIVE_EXPIRE_CYCLE_FAST_DURATION 1000 /* Microseconds. */  

void activeExpireCycle(int type) {
    effort = server.active_expire_effort-1, /* Rescale from 0 to 9. */
    config_cycle_fast_duration = ACTIVE_EXPIRE_CYCLE_FAST_DURATION + ACTIVE_EXPIRE_CYCLE_FAST_DURATION/4*effort,
    config_cycle_acceptable_stale = ACTIVE_EXPIRE_CYCLE_ACCEPTABLE_STALE - effort;    
    long long start = ustime() /* server.c,单位us */
    ……
    if (type == ACTIVE_EXPIRE_CYCLE_FAST) {
        /* Don't start a fast cycle if the previous cycle did not exit
         * for time limit, unless the percentage of estimated stale keys is
         * too high. Also never repeat a fast cycle for the same period
         * as the fast cycle total duration itself. */
        if (!timelimit_exit &&
            server.stat_expired_stale_perc < config_cycle_acceptable_stale)
            return;

        if (start < last_fast_cycle + (long long)config_cycle_fast_duration*2)
            return;

        last_fast_cycle = start;
    }
    ……
}

执行FAST模式有几个前提条件:

  1. 上一次任务不是因为超时而退出,且已过期键占比近似值server.stat_expired_stale_perc小于可容忍上限config_cycle_acceptable_stale:也就是说过期数据没有那么多,SHOW模式够用,不需要通过FAST来协助。
  2. 距离上一次FAST时间,未超过指定的时间间隔,默认是2000us

时间&数量限制

// server.h
#define CRON_DBS_PER_CALL 16  /* 每次检查多少个数据库 */
#define CONFIG_DEFAULT_HZ        10             /* Time interrupt calls/sec. */

// server.c
server.hz = server.config_hz = CONFIG_DEFAULT_HZ;
   
// expire.c                                   
#define ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC 25 /* Max % of CPU to use. */
#define ACTIVE_EXPIRE_CYCLE_FAST_DURATION 1000 /* Microseconds. */  
void activeExpireCycle(int type) {    
    ……   
    int dbs_per_call = CRON_DBS_PER_CALL;    
    config_cycle_slow_time_perc = ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC + 2 * effort,    
    config_cycle_fast_duration = ACTIVE_EXPIRE_CYCLE_FAST_DURATION + ACTIVE_EXPIRE_CYCLE_FAST_DURATION/4*effort,                       
    ……                                   
    /* We usually should test CRON_DBS_PER_CALL per iteration, with
     * two exceptions:
     *
     * 1) Don't test more DBs than we have.
     * 2) If last time we hit the time limit, we want to scan all DBs
     * in this iteration, as there is work to do in some DB and we don't want
     * expired keys to use memory for too much time. */
    if (dbs_per_call > server.dbnum || timelimit_exit)
        dbs_per_call = server.dbnum;

    /* We can use at max 'config_cycle_slow_time_perc' percentage of CPU
     * time per iteration. Since this function gets called with a frequency of
     * server.hz times per second, the following is the max amount of
     * microseconds we can spend in this function. */
    timelimit = config_cycle_slow_time_perc*1000000/server.hz/100;
    timelimit_exit = 0;
    if (timelimit <= 0) timelimit = 1;

    if (type == ACTIVE_EXPIRE_CYCLE_FAST)
        timelimit = config_cycle_fast_duration; /* in microseconds. */                                   
                                   
    ……  
}

一次扫描dbs_per_call个DB,默认值为16

  • 如果超过redis的DB数量,则dbs_per_call改为redis的DB数量。
  • 如果上一次是因为timelimit_exit(超时)而结束,说明过期数据很多,则需要扫描所有DB,尽快清理掉所有过期数据,dbs_per_call改为redis的DB数量。

计算单次执行时间timelimit:

  • SLOW模式下,默认为25*1000000/10/100us。
  • FAST模式下,默认为1000us。

循环

// dict.h
/* This is the initial size of every hash table */
#define DICT_HT_INITIAL_SIZE     4

// expire.c                                   
void activeExpireCycle(int type) {    
    ……
    static unsigned int current_db = 0; /* Last DB tested. */
    ……   
    for (j = 0; j < dbs_per_call && timelimit_exit == 0; j++) {
        /* Expired and checked in a single loop. */
        unsigned long expired, sampled;

        redisDb *db = server.db+(current_db % server.dbnum);

        /* Increment the DB now so we are sure if we run out of time
         * in the current DB we'll restart from the next. This allows to
         * distribute the time evenly across DBs. */
        current_db++;

        /* Continue to expire if at the end of the cycle there are still
         * a big percentage of keys to expire, compared to the number of keys
         * we scanned. The percentage, stored in config_cycle_acceptable_stale
         * is not fixed, but depends on the Redis configured "expire effort". */
        do {
            unsigned long num, slots;
            long long now, ttl_sum;
            int ttl_samples;
            iteration++;

            /* If there is nothing to expire try next DB ASAP. */
            if ((num = dictSize(db->expires)) == 0) {
                db->avg_ttl = 0;
                break;
            }
            slots = dictSlots(db->expires);
            now = mstime();

            /* When there are less than 1% filled slots, sampling the key
             * space is expensive, so stop here waiting for better times...
             * The dictionary will be resized asap. */
            if (slots > DICT_HT_INITIAL_SIZE &&
                (num*100/slots < 1)) break;
            ……                
            /* We can't block forever here even if there are many keys to
             * expire. So after a given amount of milliseconds return to the
             * caller waiting for the other active expire cycle. */
            if ((iteration & 0xf) == 0) { /* check once every 16 iterations. */
                elapsed = ustime()-start;
                if (elapsed > timelimit) {
                    timelimit_exit = 1;
                    server.stat_expired_time_cap_reached_count++;
                    break;
                }
            }
            /* We don't repeat the cycle for the current database if there are
             * an acceptable amount of stale keys (logically expired but yet
             * not reclaimed). */            
        } while (……); 
    }                                                                      
    ……
}   

在未超时的前提下,循环DB清理数据:

  • 静态变量current_db记录上一次清理的DB序号,每次都加1。
  • 如果当前DB没有设置了过期时间的记录,则结束当前DB循环,清理下一个DB。
  • 如果存在过期数据,但是存储空间使用率不足1%(过期数据量/hash桶数量 < 0.01),这样遍历数据有效命中率会很低,处理起来会浪费时间,后面的访问会很快触发字典的缩容,缩容后再进行处理效率更高, 结束当前DB循环,清理下一个DB。
  • 每循环16(0xf)次检查下是否已经超时,如果已经超时,则设置超时标志timelimit_exit,即结束当前任务。

清理

// expire.c     
#define ACTIVE_EXPIRE_CYCLE_KEYS_PER_LOOP 20 /* Keys for each DB loop. */
                              
void activeExpireCycle(int type) {    
    ……
    config_keys_per_loop = ACTIVE_EXPIRE_CYCLE_KEYS_PER_LOOP + ACTIVE_EXPIRE_CYCLE_KEYS_PER_LOOP/4 * effort,   
    ……    
    long total_sampled = 0;
    long total_expired = 0;
    for (j = 0; j < dbs_per_call && timelimit_exit == 0; j++) {    
    ……
        do {
            unsigned long num, slots;
            long long now, ttl_sum;
            int ttl_samples;
            iteration++;    
            ……    
            expired = 0;
            sampled = 0;
            ttl_sum = 0;
            ttl_samples = 0;    
            if (num > config_keys_per_loop)
                num = config_keys_per_loop;

            long max_buckets = num*20;
            long checked_buckets = 0;
            while (sampled < num && checked_buckets < max_buckets) {
                for (int table = 0; table < 2; table++) {
                    if (table == 1 && !dictIsRehashing(db->expires)) break;

                    unsigned long idx = db->expires_cursor;
                    idx &= db->expires->ht[table].sizemask;
                    dictEntry *de = db->expires->ht[table].table[idx];
                    long long ttl;

                    /* Scan the current bucket of the current table. */
                    checked_buckets++;
                    while(de) {
                        /* Get the next entry now since this entry may get
                         * deleted. */
                        dictEntry *e = de;
                        de = de->next;

                        ttl = dictGetSignedIntegerVal(e)-now;
                        if (activeExpireCycleTryExpire(db,e,now)) expired++;
                        if (ttl > 0) {
                            /* We want the average TTL of keys yet
                             * not expired. */
                            ttl_sum += ttl;
                            ttl_samples++;
                        }
                        sampled++;
                    }
                }
                db->expires_cursor++;
            }            
            total_expired += expired;
            total_sampled += sampled; 
            /* Update the average TTL stats for this database. */
            if (ttl_samples) {
                long long avg_ttl = ttl_sum/ttl_samples;

                /* Do a simple running average with a few samples.
                 * We just use the current estimate with a weight of 2%
                 * and the previous estimate with a weight of 98%. */
                if (db->avg_ttl == 0) db->avg_ttl = avg_ttl;
                db->avg_ttl = (db->avg_ttl/50)*49 + (avg_ttl/50);
            } 
        } while (sampled == 0 || (expired*100/sampled) > config_cycle_acceptable_stale);
    }                                                                        
    ……
}

int activeExpireCycleTryExpire(redisDb *db, dictEntry *de, long long now) {
    long long t = dictGetSignedIntegerVal(de);
    if (now > t) {
        sds key = dictGetKey(de);
        robj *keyobj = createStringObject(key,sdslen(key));

        propagateExpire(db,keyobj,server.lazyfree_lazy_expire);
        if (server.lazyfree_lazy_expire)
            dbAsyncDelete(db,keyobj);
        else
            dbSyncDelete(db,keyobj);
        notifyKeyspaceEvent(NOTIFY_EXPIRED,
            "expired",keyobj,db->id);
        signalModifiedKey(NULL, db, keyobj);
        decrRefCount(keyobj);
        server.stat_expiredkeys++;
        return 1;
    } else {
        return 0;
    }
} 
  • 设定最大允许抽查的过期数据数量(num),抽查的数据最大不超过config_keys_per_loop(默认20)
  • 设定最大允许抽查的hash桶数量(max_buckets),抽查的桶数量最大不超过config_keys_per_loop的20倍(即默认400)
redis的hash数据结构是 数组+链表的方式,每遍历一格数组,抽查的bucket数量就加一;而只有在链表里有数据的情况下,每检查一个数据对象(dictEntry),才算入num计数中;
极端情况下:遍历了max_buckets个bucket都没有过期数据,或者一个bucket内就拥有了num个过期数据。
  • 当hash正在扩容时,redis会复制出一个hash对象,所以是遍历两个table for (int table = 0; table < 2; table++),但是在遍历第二个table是会通过dictIsRehashing判断是否存在(即是否正在扩容)。
  • 通过activeExpireCycleTryExpire清理过期数据。
  • 根据清理结果,重新设置当前DB的平均过期时间数据(用于查看/统计redis DB情况)。

如果一轮抽样到的 key 中过期的比例是在可容忍的范围config_cycle_acceptable_stale(默认10%),那么这个 db 就不必再抽样了,清理下一个DB,否则继续清理当前DB。

收尾

void activeExpireCycle(int type) {    
    ……
    elapsed = ustime()-start;
    server.stat_expire_cycle_time_used += elapsed;
    latencyAddSampleIfNeeded("expire-cycle",elapsed/1000);

    /* Update our estimate of keys existing but yet to be expired.
     * Running average with this sample accounting for 5%. */
    double current_perc;
    if (total_sampled) {
        current_perc = (double)total_expired/total_sampled;
    } else
        current_perc = 0;
    server.stat_expired_stale_perc = (current_perc*0.05)+ (server.stat_expired_stale_perc*0.95);
}           

重新计算已过期键占比近似值:本轮占比 5%,历史值占比 95%。

参考

Redis 源码分析之 key 过期
Redis 源码阅读 --- Database
[[redis 源码走读] redis 过期策略]( https://wenfh2020.com/2020/02...

你可能感兴趣的:(redis)