spark源码解析-master流程分析

spark版本: 2.0.0

1.概念

master管理着spark的主要元数据,用于管理集群,资源调度等。

2.master启动过程

2.1 Master.main方法

在start-master.sh脚本中可以看出最终调用的是org.apache.spark.deploy.master.Master的main方法。现在来分析一下这个方法:

  def main(argStrings: Array[String]) {
     
  // 日志
    Utils.initDaemon(log)
    // spark 配置对象
    val conf = new SparkConf
    // master参数对象,用于解析传递参数,比如:--host ,--webui-port等
    val args = new MasterArguments(argStrings, conf)
    val (rpcEnv, _, _) =
    // 启动master通信端(核心方法)
    startRpcEnvAndEndpoint(args.host, args.port, args.webUiPort, conf)
    rpcEnv.awaitTermination()
  }

2.2 Master.startRpcEnvAndEndpoint方法

 def startRpcEnvAndEndpoint(
      host: String,
      port: Int,
      webUiPort: Int,
      conf: SparkConf): (RpcEnv, Int, Option[Int]) = {
     
    // 安全管理器
    val securityMgr = new SecurityManager(conf)
    // 创建rpc环境对象,现在是基于netty
    val rpcEnv = RpcEnv.create(SYSTEM_NAME, host, port, conf, securityMgr)
    // 注册master通信端,并返回其通信引用 【1】   
    val masterEndpoint = rpcEnv.setupEndpoint(ENDPOINT_NAME,
      new Master(rpcEnv, rpcEnv.address, webUiPort, securityMgr, conf))
    // 向Master的通信终端发送请求,获取绑定的端口号 【2】
    val portsResponse = masterEndpoint.askWithRetry[BoundPortsResponse](BoundPortsRequest)

    (rpcEnv, portsResponse.webUIPort, portsResponse.restPort)
  }

核心位置分析:

【1】

Dispatcher.scala
----------------------------
  /**
    * 注册rpc通信端
    * @param name
    * @param endpoint
    * @return
    */
  def registerRpcEndpoint(name: String, endpoint: RpcEndpoint): NettyRpcEndpointRef = {
     
    val addr = RpcEndpointAddress(nettyEnv.address, name)
    // 获取rpc通信端的引用,可以进行通信
    val endpointRef = new NettyRpcEndpointRef(nettyEnv.conf, addr, nettyEnv)
    synchronized {
     
      if (stopped) {
     
        throw new IllegalStateException("RpcEnv has been stopped")
      }
      // 添加endpoint名称和对应的数据封装映射
      if (endpoints.putIfAbsent(name, new EndpointData(name, endpoint, endpointRef)) != null) {
     
        throw new IllegalArgumentException(s"There is already an RpcEndpoint called $name")
      }
      val data = endpoints.get(name)
      // 添加endpoint引用
      endpointRefs.put(data.endpoint, data.ref)
      // 添加到消息处理队列中,等待定时任务处理 
      receivers.offer(data)  // for the OnStart message
    }
    endpointRef
  }

上面有一段最核心的代码是:

receivers.offer(data)

看似只是将请求的数据放入receivers队列中,但是它将触发定时任务处理请求,详情如下:

Dispatcher.scala
-------------------

 /** 线程池一直在处理MessageLoop的run方法 */
  private val threadpool: ThreadPoolExecutor = {
     
    val numThreads = nettyEnv.conf.getInt("spark.rpc.netty.dispatcher.numThreads",
      math.max(2, Runtime.getRuntime.availableProcessors()))
    // 守护线程不停监听消息
    val pool = ThreadUtils.newDaemonFixedThreadPool(numThreads, "dispatcher-event-loop")
    for (i <- 0 until numThreads) {
     
      pool.execute(new MessageLoop)
    }
    pool
  }

  /** Message loop used for dispatching messages. */
  private class MessageLoop extends Runnable {
     
    override def run(): Unit = {
     
      try {
     
      // 不断循环
        while (true) {
     
          try {
     
            val data = receivers.take()
            // 特殊请求
            if (data == PoisonPill) {
     
              // Put PoisonPill back so that other MessageLoops can see it.
              receivers.offer(PoisonPill)
              return
            }
            // 接收方处理收信箱
            data.inbox.process(Dispatcher.this)
          } catch {
     
            case NonFatal(e) => logError(e.getMessage, e)
          }
        }
      } catch {
     
        case ie: InterruptedException => // exit
      }
    }
  }
  

为了解释上面的data.inbox.process(Dispatcher.this),重点介绍一下data.inbox属性

Dispatcher.scala
-------------------


  private class EndpointData(
      val name: String,
      val endpoint: RpcEndpoint,
      val ref: NettyRpcEndpointRef) {
     
      // 每次创建一个新对象时,同时创建一个Inbox对象
    val inbox = new Inbox(ref, endpoint)
  }
  

private[netty] class Inbox(
    val endpointRef: NettyRpcEndpointRef,
    val endpoint: RpcEndpoint)
  extends Logging {
     

  inbox =>  // Give this an alias so we can use it more clearly in closures.

  // 消息集合,放入这里的消息并不会马上处理,而是要加入到Dispatcher.receivers中,利用线程池并发处理
  @GuardedBy("this")
  protected val messages = new java.util.LinkedList[InboxMessage]()

  /** True if the inbox (and its associated endpoint) is stopped. */
  // 是否已经停止接收
  @GuardedBy("this")
  private var stopped = false

  /** Allow multiple threads to process messages at the same time. */
  // 是否允许并发
  @GuardedBy("this")
  private var enableConcurrent = false

  /** The number of threads processing messages for this inbox. */
  // inbox中活跃线程数
  @GuardedBy("this")
  private var numActiveThreads = 0

  // OnStart should be the first message to process
  // 每次创建Inbox对象时,都会先添加一个OnStart消息
  inbox.synchronized {
     
    messages.add(OnStart)
  }

根据上面分析可知,每次创建EndpointData对象时,就会添加OnStart消息到inbox对象中。所以在注册时receivers.offer(data)就会添加一个OnStart消息等待处理,现在来看一下真正的处理消息方法(即解释:data.inbox.process(Dispatcher.this)):

  def process(dispatcher: Dispatcher): Unit = {
     
    var message: InboxMessage = null
    inbox.synchronized {
     
      // 存在线程处理
      if (!enableConcurrent && numActiveThreads != 0) {
     
        return
      }
      // 读取消息
      message = messages.poll()
      if (message != null) {
     
        numActiveThreads += 1
      } else {
     
        return
      }
    }
    while (true) {
     
      safelyCall(endpoint) {
     
        /**
          * 处理各种类型的消息
          */
        message match {
     
           .......
           // 只保留引用到的OnStart消息处理
          case OnStart =>
            // 这里的endpoint指Master对象,所以就是调用Master.onStart方法 
            endpoint.onStart()
            if (!endpoint.isInstanceOf[ThreadSafeRpcEndpoint]) {
     
              inbox.synchronized {
     
                if (!stopped) {
     
                  enableConcurrent = true
                }
              }
            }
           .......
        }
      }
 .......
   
  }

接着上面分析的节奏,来分析一下Master.onStart方法

Master.scala
----------------------


 override def onStart(): Unit = {
     
    logInfo("Starting Spark master at " + masterUrl)
    logInfo(s"Running Spark version ${org.apache.spark.SPARK_VERSION}")
    // 使用jetty创建web ui请求服务
    webUi = new MasterWebUI(this, webUiPort)
    webUi.bind()
    masterWebUiUrl = "http://" + masterPublicAddress + ":" + webUi.boundPort
    // 检查超时
    checkForWorkerTimeOutTask = forwardMessageThread.scheduleAtFixedRate(new Runnable {
     
      override def run(): Unit = Utils.tryLogNonFatalError {
     
        self.send(CheckForWorkerTimeOut)
      }
    }, 0, WORKER_TIMEOUT_MS, TimeUnit.MILLISECONDS)
    // 如果启用了rest server,那么启动rest服务,可以通过该服务向master提交各种请求
    if (restServerEnabled) {
     
      val port = conf.getInt("spark.master.rest.port", 6066)
      restServer = Some(new StandaloneRestServer(address.host, port, conf, self, masterUrl))
    }
    restServerBoundPort = restServer.map(_.start())
    // 指标监控(不是重点,建议直接跳过)
    masterMetricsSystem.registerSource(masterSource)
    masterMetricsSystem.start()
    applicationMetricsSystem.start()
    // Attach the master and app metrics servlet handler to the web ui after the metrics systems are
    // started.
    // 监控的指标也放在web ui中
    masterMetricsSystem.getServletHandlers.foreach(webUi.attachHandler)
    applicationMetricsSystem.getServletHandlers.foreach(webUi.attachHandler)


// ------------这段属于master HA部分,以后单独介绍---------------
    // 指定是java序列化方式,可以修改为工厂模式
    val serializer = new JavaSerializer(conf)
    // 根据恢复模式选择,持久化引擎和leader选举
    val (persistenceEngine_, leaderElectionAgent_) = RECOVERY_MODE match {
     
      // 如果恢复模式是ZOOKEEPER,那么通过zookeeper来持久化恢复状态
      case "ZOOKEEPER" =>
        logInfo("Persisting recovery state to ZooKeeper")
        val zkFactory =
          new ZooKeeperRecoveryModeFactory(conf, serializer)
        (zkFactory.createPersistenceEngine(), zkFactory.createLeaderElectionAgent(this))
      // 如果恢复模式是文件系统,那么通过文件系统来持久化恢复状态
      case "FILESYSTEM" =>
        val fsFactory =
          new FileSystemRecoveryModeFactory(conf, serializer)
        (fsFactory.createPersistenceEngine(), fsFactory.createLeaderElectionAgent(this))
      // 如果恢复模式是定制的,那么指定你定制的全路径类名,然后产生相关操作来持久化恢复状态
      case "CUSTOM" =>
        val clazz = Utils.classForName(conf.get("spark.deploy.recoveryMode.factory"))
        val factory = clazz.getConstructor(classOf[SparkConf], classOf[Serializer])
          .newInstance(conf, serializer)
          .asInstanceOf[StandaloneRecoveryModeFactory]
        (factory.createPersistenceEngine(), factory.createLeaderElectionAgent(this))
      // 其他处理方式
      case _ =>
        (new BlackHolePersistenceEngine(), new MonarchyLeaderAgent(this))
    }
    persistenceEngine = persistenceEngine_
    leaderElectionAgent = leaderElectionAgent_
  }

其中master.onStart非常简单,就是创建监听服务,访问ui端口,确定master HA恢复模式
上面介绍了这么多,其实只是介绍了startRpcEnvAndEndpoint方法中的核心代码之一的val masterEndpoint = rpcEnv.setupEndpoint(ENDPOINT_NAME, new Master(rpcEnv, rpcEnv.address, webUiPort, securityMgr, conf)),现在来介绍一下:val portsResponse = masterEndpoint.askWithRetry[BoundPortsResponse](BoundPortsRequest)

【2】:

RpcEndpointRef.scala
-----------------------



  /**
   *         多次重试请求
   */
  def askWithRetry[T: ClassTag](message: Any, timeout: RpcTimeout): T = {
     
    // TODO: Consider removing multiple attempts
    var attempts = 0
    var lastException: Exception = null
    // 如果没有达到最大重试次数
    while (attempts < maxRetries) {
     
      attempts += 1
      try {
     
        // 处理请求(核心)
        val future = ask[T](message, timeout)
        // 等待处理结果
        val result = timeout.awaitResult(future)
        if (result == null) {
     
          throw new SparkException("RpcEndpoint returned null")
        }
        return result
      } catch {
     
        case ie: InterruptedException => throw ie
        case e: Exception =>
          lastException = e
          logWarning(s"Error sending message [message = $message] in $attempts attempts", e)
      }
      // 休眠等待下一次重试机会
      if (attempts < maxRetries) {
     
        Thread.sleep(retryWaitMs)
      }
    }

    throw new SparkException(
      s"Error sending message [message = $message]", lastException)
  }

处理请求代码ask[T](message, timeout) (message=BoundPortsRequest)来分析一下,

NettyRpcEnv.scala 
---------------------


  private[netty] def ask[T: ClassTag](message: RequestMessage, timeout: RpcTimeout): Future[T] = {
     
    val promise = Promise[Any]()
    // 目标地址
    val remoteAddr = message.receiver.address

    def onFailure(e: Throwable): Unit = {
     
      if (!promise.tryFailure(e)) {
     
        logWarning(s"Ignored failure: $e")
      }
    }

    def onSuccess(reply: Any): Unit = reply match {
     
      case RpcFailure(e) => onFailure(e)
      case rpcReply =>
        if (!promise.trySuccess(rpcReply)) {
     
          logWarning(s"Ignored message: $reply")
        }
    }

    try {
     
      // 如果请求的目标地址是本机
      if (remoteAddr == address) {
     
        val p = Promise[Any]()
        // 异步处理消息
        p.future.onComplete {
     
          // 如果成功,会调用onSuccess方法,promise.future对象可以获取到数据
          case Success(response) => onSuccess(response)
          case Failure(e) => onFailure(e)
        }(ThreadUtils.sameThread)
        // 发送本地消息
        dispatcher.postLocalMessage(message, p)
      } else {
     
        // 封装rpc请求对象
        val rpcMessage = RpcOutboxMessage(serialize(message),
          onFailure,
          (client, response) => onSuccess(deserialize[Any](client, response)))
        //
        postToOutbox(message.receiver, rpcMessage)
        promise.future.onFailure {
     
          case _: TimeoutException => rpcMessage.onTimeout()
          case _ =>
        }(ThreadUtils.sameThread)
      }
      // 超时检查
      val timeoutCancelable = timeoutScheduler.schedule(new Runnable {
     
        override def run(): Unit = {
     
          onFailure(new TimeoutException(s"Cannot receive any reply in ${timeout.duration}"))
        }
      }, timeout.duration.toNanos, TimeUnit.NANOSECONDS)
      promise.future.onComplete {
      v =>
        timeoutCancelable.cancel(true)
      }(ThreadUtils.sameThread)
    } catch {
     
      case NonFatal(e) =>
        onFailure(e)
    }
    // 如果获取到返回结果,直接转换为T类型对象;出现异常使用超时处理
    promise.future.mapTo[T].recover(timeout.addMessageIfTimeout)(ThreadUtils.sameThread)
  }

虽然上面的代码很长,但是主要是区分两种请求接收方:

(1) remoteAddr == address,请求和接收方是一台服务器

核心代码是:dispatcher.postLocalMessage(message, p)

(2) remoteAddr != address,不同服务器

核心代码是:postToOutbox(message.receiver, rpcMessage)不过由于master启动,一般在本机执行,所以这里先之分析remoteAddr == address的请况,在以后会介绍outbox处理。

接下来,我将依次分析这句代码,想看一下:dispatcher.postLocalMessage(message, p),它表示通过消息分发器将message发送到本机:

Dispatcher.scala 
-------------------


  def postLocalMessage(message: RequestMessage, p: Promise[Any]): Unit = {
     
    val rpcCallContext =
      new LocalNettyRpcCallContext(message.senderAddress, p)
    // 拼装rpc消息对象
    val rpcMessage = RpcMessage(message.senderAddress, message.content, rpcCallContext)
    // 核心代码**
    postMessage(message.receiver.name, rpcMessage, (e) => p.tryFailure(e))
  }


  private def postMessage(
      endpointName: String,
      message: InboxMessage,
      callbackIfStopped: (Exception) => Unit): Unit = {
     
    val error = synchronized {
     
      val data = endpoints.get(endpointName)
      if (stopped) {
     
        Some(new RpcEnvStoppedException())
      } else if (data == null) {
     
        Some(new SparkException(s"Could not find $endpointName."))
      } else {
     
        // 往需要发送的通信端inbox中添加一条消息,并添加到receivers从而触发消息处理
        data.inbox.post(message)
        receivers.offer(data)
        None
      }
    }
    // We don't need to call `onStop` in the `synchronized` block
    error.foreach(callbackIfStopped)
  }

这段代码是不是很熟悉,其实就是将message发送到endpoint的inbox,然后通过定时处理请求。
根据前面的分析,可以知道最终相当于调用inbox.process方法,请求类型是RpcMessage
即:

 def process(dispatcher: Dispatcher): Unit = {
     
 ..... 为了突出重点,这里是提出这段代码
  message match {
     
          case RpcMessage(_sender, content, context) =>
            try {
     
            // 这里endpoint = master 即调用master.receiveAndReply方法
              endpoint.receiveAndReply(context).applyOrElse[Any, Unit](content, {
      msg =>
                throw new SparkException(s"Unsupported message $message from ${_sender}")
              })
            } catch {
     
              case NonFatal(e) =>
                context.sendFailure(e)
                // Throw the exception -- this exception will be caught by the safelyCall function.
                // The endpoint's onError function will be called.
                throw e
            }
......



Master.scala  -> 

override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
     
.......
    case BoundPortsRequest =>
      context.reply(BoundPortsResponse(address.port, webUi.boundPort, restServerBoundPort))
......

Master endpoint对BoundPortsRequest请求处理逻辑非常简单,不做多说明

至此,master启动涉及的核心对象和方法就介绍完了。

你可能感兴趣的:(spark,spark,大数据,spark源码分析,源码)