- 基于opencv消除图片马赛克
小苗爸爸
opencv人工智能计算机视觉
以下是一个基于Python的图片马赛克消除函数实现,结合了图像处理和深度学习方法。由于马赛克消除涉及复杂的图像重建任务,建议根据实际需求选择合适的方法:importcv2importnumpyasnpfromPILimportImagedefremove_mosaic(image_path,output_path,method='traditional',block_size=10,scale_f
- 【AI深度学习基础】Pandas完全指南入门篇:数据处理的瑞士军刀 (含完整代码)
arbboter
人工智能人工智能深度学习pandas数据处理数据分析数据清洗数据分析效率提升
Pandas系列文章导航入门篇进阶篇终极篇一、引言在大数据与AI驱动的时代,数据预处理和分析是深度学习与机器学习的基石。Pandas作为Python生态中最强大的数据处理库,以其灵活的数据结构(如DataFrame和Series)和丰富的功能(数据清洗、转换、聚合等),成为数据科学家和工程师的核心工具。Pandas以Series(一维标签数组)和DataFrame(二维表格)为核心数据结构,提供高
- 对“预训练”的理解
衣衣困
深度学习神经网络自然语言处理
预训练有什么用传统的机器学习是偏数学的,对数据的量不做过多要求,而深度学习的项目通常是有大量的数据可供使用。在平常的任务或者项目中,我们可能并没有大量数据,只有少量数据,在这时我们就可以通过“借用”有大数据支持的模型的参数,作为基准,这样就能提高效率和准确率。因为他们神经网络的浅层是相似的,也就是说,在任务相似的情况下,可以用已有的模型即“预训练”好的模型参数实现小数据量的模型训练。预训练可以节省
- Java 大视界 -- Java 大数据机器学习模型的可解释性增强技术与应用(107)
青云交
大数据新视界Java大视界大数据java可解释性AISHAPLIME因果推理可视化交互
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 基于K8S设计实现机器学习管理调度平台
richenlin
机器学习
设计和实现一套基于Kubernetes(K8s)的机器学习管理调度平台,目标是利用K8s的容器化和调度能力,提供高效的资源管理、任务调度、可扩展性及灵活性,适应机器学习(ML)训练、推理等不同场景的需求。以下是平台设计的主要模块和实施步骤:1.系统架构概述该平台需要一个多层架构,其中K8s作为底层容器调度和资源管理平台,机器学习任务管理与调度层作为平台的核心模块。平台应具备高可用、弹性伸缩、任务监
- 【python数据挖掘之numpy】-数组及对象属性和数据转换
sc.溯琛
python数据挖掘numpy
Numpy是一个Python库,用于处理多维数组和矩阵,以及针对这些数组执行数学运算的函数。它提供了高效的数组对象和相关的操作,可以用于快速处理大量数据。Numpy的主要功能包括:创建数组、数组运算、数组索引和切片、线性代数、随机数生成等。Numpy在科学计算、数据分析、机器学习等领域都广泛应用。tips:(本博文在jupyter中实训)目录一、创建数组对象1.array()函数来创建数组的对象2
- 赋能农业数字化转型 用DeepSeek大模型开启智慧农业新纪元
jingwang-cs
人工智能人工智能后端
赋能农业数字化转型用DeepSeek大模型开启智慧农业新纪元当农业遇见DeepSeek大模型:从经验驱动到数据智能的跨越传统农业依赖“看天吃饭”,而「智慧农业」平台依托公司自主研发的农业大模型,深度融合DeepSeek前沿AI技术,构建“数据-模型-决策”全链路智能服务体系。通过深度学习历史种植数据、气象信息、土壤墒情等多维农业要素,平台可精准预测病虫害风险、产量波动及市场趋势,为农户提供科学种植
- 神经网络:人工智能的核心技术
m0_75126181
人工智能神经网络深度学习
神经网络简介神经网络是一种模仿生物神经系统的计算模型,由大量相互连接的神经元组成。它通过学习大量的数据来完成复杂的模式识别和决策任务,是当前人工智能和机器学习领域最重要的技术之一。神经网络的基本结构包括输入层、隐藏层和输出层。输入层接收外部数据,隐藏层对数据进行处理和特征提取,输出层产生最终结果。神经元之间通过带权重的连接相互作用,通过调整这些权重来实现学习过程。神经网络的工作原理神经网络的工作原
- 强化学习是否能够在完全不确定的环境中找到一个合理的策略,还是说它只能在已知规则下生效?
concisedistinct
人工智能人工智能强化学习
强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,广泛应用于机器人控制、自动驾驶、游戏策略和金融决策等领域。其核心理念是通过与环境的互动,不断学习如何选择最优行动以最大化累积奖励。尽管强化学习在许多已知和相对确定的环境中表现出色,但在面对完全不确定或动态变化的环境时,其表现和可靠性是否依然能保持一致是一个值得深入探讨的问题。我们生活的世界充满了不确定性,尤其是在
- 别只会用别人的模型了,自学Ai大模型,顺序千万不要搞反了!刚入门的小白必备!
ai大模型应用开发
人工智能pdf机器学习面试AI
在使用诸如DeepSeek、ChatGPT、豆包、文心一言等大模型之余,你是否知道这些大模型背后的技术原理是什么?假如让你从头开始学习大模型,你知道应该遵循什么样的路线嘛?今天给大家介绍一下Ai大模型的学习路线,顺序千万不要搞反了!,大家可以按照这个路线进行学习。一、前置阶段数学:线性代数、高等数学自然语言处理:Word2Vec、Seq2SeqPython:Pyotch、Tensorflow二、基
- (一)spark是什么?
一智哇
大数据框架学习sparkbigdata大数据
1.spark是什么?spark是一个用来实现快速,通用的集群计算平台spark适用于各种各样原先需要多种不同的分布式平台的场景,包括批处理,迭代算法,交互式查询,流处理。通过在一个统一的框架下支持这些不同的计算,spark使我们可以简单而低耗地把各种处理流程整合在一起。2.spark的用途(1):数据科学任务具备SQL、统计、预测建模(机器学习)等方面的经验,以及一定的python,matlab
- 推荐收藏!数据分析必会的 10 个 python 库!
Python数据挖掘
深度学习机器学习数据分析及可视化数据分析python数据挖掘算法
大家好,今天给大家分享除了基本的NumPy、Pandas和Matplotlib之外的10个流行的数据分析Python库。文末提供资料和技术交流Scikit-learnScikit-learn是一个功能强大的机器学习库,为监督和无监督学习、模型选择和预处理提供了广泛的算法。Scikit-learn简化了构建机器学习模型的过程,使其成为数据科学家和分析师的热门选择。可以通过pip命令来进行安装。pip
- 探秘Mixup:数据增强的新利器
荣正青
探秘Mixup:数据增强的新利器mixupImplementationofthemixuptrainingmethod项目地址:https://gitcode.com/gh_mirrors/mi/mixup项目简介是一个由HongyiZhang开发的Python库,它实现了机器学习中的数据增强策略——Mixup方法。这个项目的目标是通过混合不同样本的数据点生成新的训练样本,从而帮助模型更好地学习数
- AI创业机遇:垂直领域无限可能
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
AI创业垂直领域机器学习深度学习自然语言处理计算机视觉无人驾驶1.背景介绍人工智能(AI)正在各行各业掀起一场革命,为创业者带来了前所未有的机遇。垂直领域,即特定行业或细分市场,正在成为AI创业的热门选择。本文将深入探讨AI在垂直领域的应用,并提供实用的指南,帮助读者把握AI创业机遇。2.核心概念与联系2.1AI与垂直领域AI在垂直领域的应用,需要理解AI与垂直领域的关系。AI可以为垂直领域提供智
- 国内如何快速拿下微软AI-900!?
全球认证考试中心
microsoft人工智能ai
微软AI-900认证,全称AzureAIFundamentals是由微软官方最新研发的一项有关人工智能的认证证书。想要获得该证书,需通过AI-900测试或者AI-102。适用于全行业、全学龄人员,考试不设置专业和年龄限制,对人工智能感兴趣即可参加。获得证书能够证明证书持有者在机器学习(ML)、人工智能(AI)基础概念、云技术基础及MicrosoftAzure服务等多方面的掌握程度。此考试的考生应熟
- 深度学习代码分析——自用
肆——
深度学习人工智能笔记
代码来自:https://github.com/ChuHan89/WSSS-Tissue?tab=readme-ov-file借助了一些人工智能1_train_stage1.py代码功能总览该代码是弱监督语义分割(WSSS)流程的Stage1训练与测试脚本,核心任务是通过多标签分类模型生成图像级标签,为后续生成伪掩码(Pseudo-Masks)提供基础。代码分为train_phase和test_p
- Python | Pytorch | Tensor知识点总结
漂亮_大男孩
Python拾遗pythonpytorch深度学习人工智能
如是我闻:Tensor是我们接触Pytorch了解到的第一个概念,这里是一个关于PyTorchTensor主题的知识点总结,涵盖了Tensor的基本概念、创建方式、运算操作、梯度计算和GPU加速等内容。1.Tensor基本概念Tensor是PyTorch的核心数据结构,类似于NumPy的ndarray,但支持GPU加速和自动求导。PyTorch的Tensor具有动态计算图,可用于深度学习模型的前向
- 一文讲清楚自我学习和深度学习
平凡而伟大(心之所向)
人工智能人工智能深度学习机器学习
自我学习(Self-Learning)和深度学习(DeepLearning)是两个不同的概念,但它们在某些应用场景中可以有交集。下面我们将分别介绍这两个概念,并探讨如何将它们结合起来用于自我学习系统。自我学习(Self-Learning)自我学习是指个体或系统通过自主探索、实践和反思来获取知识和技能的过程。它强调的是无需外部直接指导的学习方式,通常包括以下几个方面:自主性:学习者根据自己的兴趣、需
- 【量子退火(Quantum Annealing, QA)在Machine Learning Classification中的应用】
搞技术的妹子
机器学习量子计算人工智能
随着量子计算技术的发展,**量子退火(QuantumAnnealing,QA)成为了优化问题中一种潜力巨大的方法。它不仅可以用于求解传统优化问题,还被逐渐应用于机器学习领域,特别是机器学习分类(MachineLearningClassification)**任务中。在这篇博客中,我们将探讨量子退火在机器学习分类中的应用,并通过一个实际的案例来展示如何使用量子退火优化分类模型。什么是量子退火(Qua
- 二维随机变量
Shockang
机器学习数学通关指南机器学习人工智能数学概率论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文1.二维随机变量基础1.1基本定义二维随机变量(X,Y)(X,Y)(X,Y)是由两个定义在同一概率空间上的随机变量XXX和YYY组成的向量样本空间:每个试验结果e∈Se\inSe∈S对应到平面上的一个点(X(e),Y(e))(
- 似然函数与极大似然估计
Shockang
机器学习数学通关指南机器学习人工智能数学概率论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文1.似然函数:直观理解与数学定义核心概念似然函数是机器学习中参数估计的基石,它从数据与模型之间的关系出发,提供了一种优化参数的数学框架。直观理解:假设你正在调整相机参数以拍摄最清晰的照片。似然函数就像是一个"清晰度指标",告诉
- 正交投影与内积空间:机器学习的几何基础
Shockang
机器学习数学通关指南机器学习人工智能线性代数数学
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文1.内积空间的数学定义1.1代数定义✏️两个维度相同的向量a=[a1,…,an]\mathbf{a}=[a_1,\dots,a_n]a=[a1,…,an]和b=[b1,…,bn]\mathbf{b}=[b_1,\dots,b_
- 特征值与特征向量
Shockang
机器学习数学通关指南机器学习线性代数矩阵数学
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文一、定义与数学表达特征向量:对于方阵AAA,若存在非零向量v\mathbf{v}v满足Av=λvA\mathbf{v}=\lambda\mathbf{v}Av=λv,则v\mathbf{v}v称为AAA的特征向量。特征值:对应
- tensorflow Serving架构详解和代码示例
lloyd_chou
算法ml机器翻译智慧城市边缘计算人工智能
本文介绍tensorflowServing的原理和代码实现,并提供简要的代码阅读指导.如何serve一个模型具体的步骤可以参考官方文档.主要包括两个部分:1.导出模型1.启动服务需要说明的是导出模型部分.如果要把我们训练的模型拿来提供服务,除了模型本身外,还需要一些额外的信息,比如模型的名称,输入、输出对应的tensor信息,方法名,这些东西可以让TFS进行请求数据的格式检查以及目标模型查找.这就
- mac系统下安装pycharm
连小黑
pythonpycharmmacospython
mac系统下安装pycharm前言Windows系统安装教程传送门链接:https://blog.csdn.net/lianxiaohei/article/details/121694126随着人工智能的不断发展,机器学习这门技术也越来越重要,也有很多人都因为做自动化,爬虫会学python,今天写的是pycharm编译器,在mac上如何安装,废话不多说,上步骤一、第一步下载示例:下载安装软件的第一
- TensorFlow框架介绍
Leo_WHU
tensorflow人工智能python
一、TF数据流图1.TensorFlow结构分析一个构件图阶段流程图:定义数据(张量tensor)和操作(operation)一个执行图阶段调用各方资源,讲讲定义好的数据和操作运行起来2.数据流图TensorFlowTesnsor-张量-数据Flow-流动3.图与tensorboard3.1什么是图结构图结构:数据+操作3.2图相关操作3.2.1默认图查看默认图的方法1)调用方法用tf.get_d
- 【机器学习】Reinforcement Learning-强化学习基本概念
长相忆兮长相忆
深度学习人工智能算法机器学习
1、Q值与V值1.1Q值和V值的定义Q值:也称为动作价值函数,评估动作的价值,它代表了智能体选择这个动作后,一直到最终状态奖励总和的期望,表示为Q(s,a),其中s是状态,a是动作。V值:评估状态的价值,也称为状态价值函数,表示为V(s),其中s是状态。它代表了智能体在这个状态下,一直到最终状态的奖励总和的期望。V值与动作无关只与状态有关。Q值和V值的概念是一致的,都是衡量在马可洛夫树上某一个节点
- 机器学习笔记 - 监督学习备忘清单
坐望云起
深度学习从入门到精通监督学习线性模型支持向量机生成学习集成方法
一、监督学习简介给定一组数据点关联到一组结果,我们想要构建一个分类器,学习如何从预测。1、预测类型下表总结了不同类型的预测模型:2、模型类型下表总结了不同的模型:
- 基于tensorflow使用VGG16实现猫狗识别
Jakari
tensorflowpython
importtensorflowastfimportnumpyasnpfromtensorflow.kerasimportlayers,models,optimizersfromtensorflow.keras.preprocessing.imageimportImageDataGenerator#定义VGG16模型classVGG16(tf.keras.Model):def__init__(se
- 深度学习数据集封装-----目标检测篇
科研小天才
深度学习目标检测人工智能
前言在上篇文章中,我们深入探讨了图像分类数据集的制作流程。图像分类作为计算机视觉领域的一个基础任务,通常被认为是最为简单直接的子任务之一。然而,当我们转向目标检测任务时,复杂度便显著提升,尤其是在标注框的处理环节。不同的模型架构往往对标注框的处理方式有着各自独特的要求。以YOLO系列为例,它自有一套成熟且高效的方法来应对这一挑战。鉴于篇幅有限,本文暂不深入展开YOLO的相关内容,感兴趣的读者可以查
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置