- 机器学习与深度学习间关系与区别
ℒℴѵℯ心·动ꦿ໊ོ꫞
人工智能学习深度学习python
一、机器学习概述定义机器学习(MachineLearning,ML)是一种通过数据驱动的方法,利用统计学和计算算法来训练模型,使计算机能够从数据中学习并自动进行预测或决策。机器学习通过分析大量数据样本,识别其中的模式和规律,从而对新的数据进行判断。其核心在于通过训练过程,让模型不断优化和提升其预测准确性。主要类型1.监督学习(SupervisedLearning)监督学习是指在训练数据集中包含输入
- 机器学习VS深度学习
nfgo
机器学习
机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是人工智能(AI)的两个子领域,它们有许多相似之处,但在技术实现和应用范围上也有显著区别。下面从几个方面对两者进行区分:1.概念层面机器学习:是让计算机通过算法从数据中自动学习和改进的技术。它依赖于手动设计的特征和数学模型来进行学习,常用的模型有决策树、支持向量机、线性回归等。深度学习:是机器学习的一个子领
- 联邦学习 Federated learning Google I/O‘19 笔记
努力搬砖的星期五
笔记联邦学习机器学习机器学习tensorflow
FederatedLearning:MachineLearningonDecentralizeddatahttps://www.youtube.com/watch?v=89BGjQYA0uE文章目录FederatedLearning:MachineLearningonDecentralizeddata1.DecentralizeddataEdgedevicesGboard:mobilekeyboa
- 【ShuQiHere】探索人工智能核心:机器学习的奥秘
ShuQiHere
人工智能机器学习
【ShuQiHere】什么是机器学习?机器学习(MachineLearning,ML)是人工智能(ArtificialIntelligence,AI)中最关键的组成部分之一。它使得计算机不仅能够处理数据,还能从数据中学习,从而做出预测和决策。无论是语音识别、自动驾驶还是推荐系统,背后都依赖于机器学习模型。机器学习与传统的编程不同,它不再依赖于人类编写的固定规则,而是通过数据自我改进模型,从而更灵活
- 机器学习 VS 表示学习 VS 深度学习
Efred.D
人工智能机器学习深度学习人工智能
文章目录前言一、机器学习是什么?二、表示学习三、深度学习总结前言本文主要阐述机器学习,表示学习和深度学习的原理和区别.一、机器学习是什么?机器学习(machinelearning),是从有限的数据集中学习到一定的规律,再把学到的规律应用到一些相似的样本集中做预测.机器学习的历史可以追溯到20世纪40年代McCulloch提出的人工神经元网络,目前学界大致把机器学习分为传统机器学习和机器学习两个类别
- 【python】【Ray的概述】
资源存储库
python开发语言
Overview概述Rayisanopen-sourceunifiedframeworkforscalingAIandPythonapplicationslikemachinelearning.Itprovidesthecomputelayerforparallelprocessingsothatyoudon’tneedtobeadistributedsystemsexpert.Rayminimi
- 2021-03-31 每日打卡
来多喜
昨日完成情况:1.6k散步,❌帕梅拉(我好懒)2.思维导图,statistical和machinelearning,先快速看一遍中文版,然后细看英文版.太多了,感觉在面试前看不完。决定集中精力讲清楚简历的内容。3.工作kki+myhabeats+handover。kki可以制作dataflow了,有了ga和publihser数据。myhabeatsremarketingaudience遇到困难。感
- 面向可信和节能的雾计算医疗决策支持系统的优化微型机器学习与可解释人工智能
神一样的老师
论文阅读分享人工智能
这篇论文的标题为《OptimizedTinyMachineLearningandExplainableAIforTrustableandEnergy-EfficientFog-EnabledHealthcareDecisionSupportSystem》,发表在《InternationalJournalofComputationalIntelligenceSystems》2024年第17卷,由R.
- 【论文阅读】AugSteal: Advancing Model Steal With Data Augmentation in Active Learning Frameworks(2024)
Bosenya12
科研学习模型窃取论文阅读模型窃取模型提取数据增强主动学习
摘要Withtheproliferationof(随着)machinelearningmodels(机器学习模型)indiverseapplications,theissueofmodelsecurity(模型的安全问题)hasincreasinglybecomeafocalpoint(日益成为人们关注的焦点).Modelstealattacks(模型窃取攻击)cancausesignifican
- 机器学习入门:机器学习的基本概念
Louis0687
姓名:高亦凡学号:19020100056学院:电子工程学院转载自:原文链接【嵌牛导读】机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。【嵌牛鼻子】机器学习【嵌牛提问】什么是机器学
- L1正则和L2正则
wangke
等高线与路径HOML(Hands-OnMachineLearning)上对L1_norm和L2_norm的解释:左上图是L1_norm.背景是损失函数的等高线(圆形),前景是L1_penalty的等高线(菱形),这两个组成了最终的目标函数.在梯度下降的过程中,对于损失函数的梯度为白色点轨迹,对于L1_penalty函数的梯度为黄色点轨迹.可以看出,黄色的点更容易取值为0.因此在考虑两个损失的权衡时
- 机器学习概述与应用:深度学习、人工智能与经典学习方法
刷刷刷粉刷匠
人工智能机器学习深度学习
引言机器学习(MachineLearning)是人工智能(AI)领域中最为核心的分支之一,其主要目的是通过数据学习和构建模型,帮助计算机系统自动完成特定任务。随着深度学习(DeepLearning)的崛起,机器学习技术在各行各业中的应用变得越来越广泛。在本文中,我们将详细介绍机器学习的基础概念,包括无监督学习、有监督学习、增量学习,以及常见的回归和分类问题,并结合实际代码示例来加深理解。1.机器学
- Datawhale X 李宏毅苹果书 AI夏令营|机器学习基础之案例学习
Monyan
人工智能机器学习学习李宏毅深度学习
机器学习(MachineLearning,ML):机器具有学习的能力,即让机器具备找一个函数的能力函数不同,机器学习的类别不同:回归(regression):找到的函数的输出是一个数值或标量(scalar)。例如:机器学习预测某一个时间段内的PM2.5,机器要找到一个函数f,输入是跟PM2.5有关的的指数,输出是明天中午的PM2.5的值。分类(classification):让机器做选择题,先准备
- R语言 机器学习 KNN 2个例子
waterHBO
r语言机器学习开发语言
代码的写法,参考来源是这本书:MachineLearningwithR,2ndEdition.pdf相关的资源我已经上传了,包括代码,数据,以及这行本书。下载链接–免积分下载。https://download.csdn.net/download/waterHBO/896756871.第一个例子,代码和过程,全部来自书上#我根据书中第三章KNN的内容来做的。#第3章,KNN,K-NearestNei
- 【论文阅读】Model Stealing Attacks Against Inductive Graph Neural Networks(2021)
Bosenya12
科研学习模型窃取论文阅读图神经网络模型窃取
摘要Manyreal-worlddata(真实世界的数据)comeintheformofgraphs(以图片的形式).Graphneuralnetworks(GNNs图神经网络),anewfamilyofmachinelearning(ML)models,havebeenproposedtofullyleveragegraphdata(充分利用图数据)tobuildpowerfulapplicat
- 机器学习在旅游业的革新之旅
jun778895
机器学习人工智能
机器学习在旅游业的革新之旅随着科技的飞速发展,尤其是人工智能(AI)技术的广泛应用,各个行业都迎来了前所未有的变革。其中,旅游业作为全球经济的重要支柱之一,更是受益匪浅。机器学习(MachineLearning,ML)作为AI的核心技术之一,正在逐步重塑旅游业的各个方面,从需求分析、行程规划、服务体验到营销策略,无一不展现出其巨大的潜力和价值。本文将深入探讨机器学习在旅游业的革新之旅,揭示其如何推
- Python机器学习笔记:CART算法实战
战争热诚
完整代码及其数据,请移步小编的GitHub传送门:请点击我如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote前言在python机器学习笔记:深入学习决策树算法原理一文中我们提到了决策树里的ID3算法,C4.5算法,并且大概的了
- 机器学习、深度学习、神经网络之间的关系
你好,工程师
AI机器学习
机器学习(MachineLearning)、深度学习(DeepLearning)和神经网络(NeuralNetworks)之间存在密切的关系,它们可以被看作是一种逐层递进的关系。下面简要介绍它们之间的关系:机器学习(MachineLearning):机器学习是一种人工智能的分支,关注如何通过数据让计算机系统从经验中学习,提高性能。机器学习算法可以分为监督学习、无监督学习、半监督学习和强化学习等不同
- 认识小波-DWT CWT Scattering
闪闪发亮的小星星
数字信号处理与分析计算机视觉人工智能信号处理
这里写自定义目录标题小波变换的种类连续小波变换(CWT)DWTANexampleapplicationofDWTANexampleofCWT5.MachineLearningandDeepLearningwithWaveletScattering小波散射网络大家好。在本次介绍性课程中,我将介绍一些基本的小波概念。我将主要使用一维示例,但相同的概念也可以应用于图像。首先,我们回顾一下什么是小波。现实
- 你说什么是机器学习呢
guguguyuan
人工智能
机器学习这个词是让人疑惑的,首先它是英文名称MachineLearning(简称ML)的直译,在计算界Machine一般指计算机。这个名字使用了拟人的手法,说明了这门技术是让机器“学习”的技术。但是计算机是死的,怎么可能像人类一样“学习”呢?传统上如果我们想让计算机工作,我们给它一串指令,然后它遵照这个指令一步步执行下去。有因有果,非常明确。但这样的方式在机器学习中行不通。机器学习根本不接受你输入
- 线性回归(1)
zidea
MachineLearninginMarketing感谢李宏毅《回归-案例研究》部分内容为听取李宏毅老师讲座的笔记,也融入了自己对机器学习理解,个人推荐李宏毅老师的机器学习系列课程,尤其对于初学者强烈推荐。课程设计相对其他课程要容易理解。在机器学习中算法通常分为回归和分类两种,今天我们探讨什么线性回归。以及如何设计一个线性回归模型。什么回归简单理解通过数据最终预测出来一个值。回归问题的实例就是找到
- 【了解机器学习的定义与发展历程】
AK@
人工智能人工智能机器学习
曾梦想执剑走天涯,我是程序猿【AK】目录简述概要知识图谱简述概要了解机器学习的定义与发展历程知识图谱机器学习(MachineLearning,ML)是一门跨学科的学科,它使用计算机模拟或实现人类学习行为,通过不断地获取新的知识和技能,重新组织已有的知识结构,从而提高自身的性能。简单来说,机器学习就是让计算机从数据中学习规律,并根据这些规律对未来数据进行预测。机器学习的发展历程可以追溯到上世纪50年
- 【机器学习】是什么?
dami_king
机器学习
机器学习(MachineLearning,ML)是一门多领域交叉学科,属于人工智能(ArtificialIntelligence,AI)的一个分支,致力于研究和构建算法及统计模型,让计算机系统能够在没有明确编程指令的情况下,通过分析和学习数据集中的规律与模式,从而获得新知识、发现内在联系、做出预测或者决策的能力。简单来说,机器学习就是使计算机程序能够从经验中学习和改进。以下是机器学习的一些核心概念
- 【IEEE出版、EI稳定检索】2024年机器学习与神经网络国际学术会议(MLNN 2024)
AEIC学术交流中心—李老师
机器学习神经网络人工智能
2024年机器学习与神经网络国际学术会议(MLNN2024)2024InternationalConferenceonMachinelearningandNeuralNetworks2024年4月19-21日中国-珠海重要信息大会官网:www.icmlnn.org(点击投稿/参会/了解会议详情)大会时间:2024年4月19-21日大会地点:中国-珠海接受/拒稿通知:投稿后1周左右截稿时间:2024
- ChatGPT魔法1: 背后的原理
王丰博
GPTchatgpt
1.AI的三个阶段1)上世纪50~60年代,计算机刚刚产生2)Machinelearning3)Deeplearning,有神经网络,最有代表性的是ChatGPT,GPT(GenerativePre-TrainedTransformer)2.深度神经网络llyaSutskever:做图像识别,使用了GPT去并行计算及训练。Alexnet数据库已经label好的(李飞飞)GPU算力3.GPT3.1T
- 论文阅读-面向机器学习的云工作负载预测模型的性能分析
向来痴_
论文阅读
论文名称:PerformanceAnalysisofMachineLearningCenteredWorkloadPredictionModelsforCloud摘要由于异构服务类型和动态工作负载的高变异性和维度,资源使用的精确估计是一个复杂而具有挑战性的问题。在过去几年中,资源使用和流量的预测已受到研究界的广泛关注。许多基于机器学习的工作负载预测模型通过利用其计算能力和学习能力得以发展。本文提出
- 深度学习环境下一些有用的链接
星海之眸
UsefulLinksAboutsystem初始安装系统的一些主要链接Ubuntu16.04系统美化输入法的安装wechat安装matlab安装ubuntu下matlab启动报错java.lang.runtime.Exception**********************,则执行这个命令:sudochmod-Ra+rw~/.matlabAboutMachineLearningtensorflo
- Week10
kidling_G
第10周十七、大规模机器学习(LargeScaleMachineLearning)17.1大型数据集的学习参考视频:17-1-LearningWithLargeDatasets(6min).mkv如果我们有一个低方差的模型,增加数据集的规模可以帮助你获得更好的结果。我们应该怎样应对一个有100万条记录的训练集?以线性回归模型为例,每一次梯度下降迭代,我们都需要计算训练集的误差的平方和,如果我们的学
- 机器学习入门之基础概念及线性回归
StarCoder_Yue
算法机器学习学习笔记机器学习线性回归正则化人工智能算法数学
任务目录什么是Machinelearning学习中心极限定理,学习正态分布,学习最大似然估计推导回归Lossfunction学习损失函数与凸函数之间的关系了解全局最优和局部最优学习导数,泰勒展开推导梯度下降公式写出梯度下降的代码学习L2-Norm,L1-Norm,L0-Norm推导正则化公式说明为什么用L1-Norm代替L0-Norm学习为什么只对w/Θ做限制,不对b做限制Question1:Wh
- Kaggle Intro Model Validation and Underfitting and Overfitting
卢延吉
NewDeveloper数据(Data)ML&ME&GPT机器学习
ModelValidationModelvalidationisthecornerstoneofensuringarobustandreliablemachinelearningmodel.It'stherigorousassessmentofhowwellyourmodelperformsonunseendata,mimickingreal-worldscenarios.Doneright,it
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri