【数据分析-学术前沿趋势分析】 Task4 论文种类分类

Task4 论文种类分类

  • 1. 任务说明
  • 2. 数据处理步骤
  • 3. 文本分类思路
  • 4. 具体代码实现
    • 4.2 使用TF-IDF+机器学习分类器进行文本分类
    • 4.2 使用深度学习模型

Datawhale一月份的组队学习~
关键词:数据分析、爬虫、文本分析
开源地址: https://github.com/datawhalechina/team-learning-data-mining/tree/master/AcademicTrends

1. 任务说明

  • 学习主题:论文分类(数据建模任务),利用已有数据建模,对新论文进行类别分类;
  • 学习内容:使用论文标题完成类别分类;
  • 学习成果:学会文本分类的基本方法、TF-IDF等;

2. 数据处理步骤

在原始arxiv论文中论文都有对应的类别,而论文类别是作者填写的。在本次任务中我们可以借助论文的标题和摘要完成:

  • 对论文标题和摘要进行处理;
  • 对论文类别进行处理;
  • 构建文本分类模型;

3. 文本分类思路

  • 思路1:TF-IDF+机器学习分类器

直接使用TF-IDF对文本提取特征,使用分类器进行分类,分类器的选择上可以使用SVM、LR、XGboost等

  • 思路2:FastText

FastText是入门款的词向量,利用Facebook提供的FastText工具,可以快速构建分类器

  • 思路3:WordVec+深度学习分类器

WordVec是进阶款的词向量,并通过构建深度学习分类完成分类。深度学习分类的网络结构可以选择TextCNN、TextRnn或者BiLSTM。

  • 思路4:Bert词向量

Bert是高配款的词向量,具有强大的建模学习能力。

4. 具体代码实现

# 导入所需的package
import seaborn as sns #用于画图
from bs4 import BeautifulSoup #用于爬取arxiv的数据
import re #用于正则表达式,匹配字符串的模式
import requests #用于网络连接,发送网络请求,使用域名获取对应信息
import json #读取数据,我们的数据为json格式的
import pandas as pd #数据处理,数据分析
import matplotlib.pyplot as plt #画图工具
def readArxivFile(path, columns=['id', 'submitter', 'authors', 'title', 'comments', 'journal-ref', 'doi',
       'report-no', 'categories', 'license', 'abstract', 'versions',
       'update_date', 'authors_parsed'], count=None):
    '''
    定义读取文件的函数
        path: 文件路径
        columns: 需要选择的列
        count: 读取行数
    '''
    
    data  = []
    with open(path, 'r') as f: 
        for idx, line in enumerate(f): 
            if idx == count:
                break
                
            d = json.loads(line)
            d = {
     col : d[col] for col in columns}
            data.append(d)

    data = pd.DataFrame(data)
    return data

data = readArxivFile('./archive/arxiv-metadata-oai-snapshot.json', 
                     ['id', 'title', 'categories', 'abstract'],
                    200000)
data.head()

【数据分析-学术前沿趋势分析】 Task4 论文种类分类_第1张图片

为了方便数据处理,先将标题和摘要进行拼接完成分类

data['text'] = data['title'] + data['abstract']
#原来的字段存在换行,现在将其转化为空格
data['text'] = data['text'].apply(lambda x: x.replace('\n',' '))
data['text'] = data['text'].apply(lambda x: x.lower())
data = data.drop(['abstract', 'title'], axis=1)
data.head()

【数据分析-学术前沿趋势分析】 Task4 论文种类分类_第2张图片

由于原始论文可能有多个类别,需要进行切分

# 多个类别,包含子分类
data['categories'] = data['categories'].apply(lambda x : x.split(' '))

# 单个类别,不包含子分类
data['categories_big'] = data['categories'].apply(lambda x : [xx.split('.')[0] for xx in x])
data.head()

【数据分析-学术前沿趋势分析】 Task4 论文种类分类_第3张图片

对类别进行编码

from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
data_label = mlb.fit_transform(data['categories_big'].iloc[:])
data_label

【数据分析-学术前沿趋势分析】 Task4 论文种类分类_第4张图片

4.2 使用TF-IDF+机器学习分类器进行文本分类

此处限制只提取4000个词,由于这里是多标签分类,可以使用sklearn的多标签分类进行封装:

from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(max_features=4000)
data_tfidf = vectorizer.fit_transform(data['text'].iloc[:])
# 划分训练集和验证集
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(data_tfidf, data_label,
                                                 test_size = 0.2,random_state = 1)

# 构建多标签分类模型
from sklearn.multioutput import MultiOutputClassifier
from sklearn.naive_bayes import MultinomialNB
clf = MultiOutputClassifier(MultinomialNB()).fit(x_train, y_train)
from sklearn.metrics import classification_report
print(classification_report(y_test, clf.predict(x_test)))

【数据分析-学术前沿趋势分析】 Task4 论文种类分类_第5张图片

4.2 使用深度学习模型

使用深度学习模型,单词进行词嵌入然后训练。将数据集处理进行编码,并进行截断

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(data['text'].iloc[:100000], 
                                                    data_label[:100000],
                                                 test_size = 0.95,random_state = 1)
# 参数设置
max_features= 500
max_len= 150
embed_size=100
batch_size = 128
epochs = 5

from keras.preprocessing.text import Tokenizer
from keras.preprocessing import sequence

tokens = Tokenizer(num_words = max_features)
tokens.fit_on_texts(list(data['text'].iloc[:100000]))

y_train = data_label[:100000]
x_sub_train = tokens.texts_to_sequences(data['text'].iloc[:100000])
x_sub_train = sequence.pad_sequences(x_sub_train, maxlen=max_len)

注由于版本问题我这里使用keras报错,需全部修改成tensorflow.keras.

# LSTM model
# Keras Layers:
from tensorflow.keras.layers import Dense,Input,LSTM,Bidirectional,Activation,Conv1D,GRU
from tensorflow.keras.layers import Dropout,Embedding,GlobalMaxPooling1D, MaxPooling1D, Add, Flatten
from tensorflow.keras.layers import GlobalAveragePooling1D, GlobalMaxPooling1D, concatenate, SpatialDropout1D# Keras Callback Functions:
from tensorflow.keras.callbacks import Callback
from tensorflow.keras.callbacks import EarlyStopping,ModelCheckpoint
from tensorflow.keras import initializers, regularizers, constraints, optimizers, layers, callbacks
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam

sequence_input = Input(shape=(max_len, ))
x = Embedding(max_features, embed_size, trainable=True)(sequence_input)
x = SpatialDropout1D(0.2)(x)
x = Bidirectional(GRU(128, return_sequences=True,dropout=0.1,recurrent_dropout=0.1))(x)
x = Conv1D(64, kernel_size = 3, padding = "valid", kernel_initializer = "glorot_uniform")(x)
avg_pool = GlobalAveragePooling1D()(x)
max_pool = GlobalMaxPooling1D()(x)
x = concatenate([avg_pool, max_pool]) 
preds = Dense(19, activation="sigmoid")(x)

model = Model(sequence_input, preds)
model.compile(loss='binary_crossentropy',optimizer=Adam(lr=1e-3),metrics=['accuracy'])
model.fit(x_sub_train, y_train, 
          batch_size=batch_size, 
          validation_split=0.2,
          epochs=epochs)

你可能感兴趣的:(数据分析)